栈 之 如何实现一个栈
前言
栈最鲜明的特点就是后进先出,一碟盘子就是类似这样的结构,最晚放上去的,可以最先拿出来。本文将介绍的是如何自己实现一个栈结构。
栈的操作
栈是一种先进后出(Last-In-First-Out, LIFO)的数据结构,常见操作包括:
1、入栈(Push):将元素压入栈顶。
2、出栈(Pop):弹出栈顶元素并返回其值。
3、查看栈顶元素(Peek):返回栈顶元素的值,但不对栈进行修改。
4、判断栈是否为空(isEmpty):检查栈是否为空,如果栈中没有任何元素,则返回 true;否则返回 false。
5、获取栈的大小(size):返回栈中元素的数量。
6、清空栈(clear):清除栈中的所有元素,使其变为空栈。
这些是栈的基本操作。栈的实际使用还可能涉及其他操作,如遍历栈、搜索特定元素、栈的深度等等。根据具体的需求,你可以针对栈的特性来自定义其他更复杂的操作。
栈的实现
栈是较容易实现的抽象数据结构之一。我们可以选择数组或者链表来实现,它们各有特点,前者容量有限且固定,但操作简单,而后者容量理论上不受限,但是操作并不如数组方便,每次入栈要进行内存申请,出栈要释放内存,稍有不慎便造成内存泄露。本文对两种实现都做介绍。
1、用数组实现栈
数组之你值得了解的底层
/*** 用数组实现一个栈*/
public class MyStack {private int maxSize; //栈的大小private int[] stackArray; // 数组,模拟一个栈,用于存放private int top = -1; // 表示栈顶,初始为-1public MyStack(int maxSize) {this.maxSize = maxSize;stackArray = new int[this.maxSize];}public void push(int value) {//判断是否栈满if(isFull()){System.out.println("栈满了..");return;}stackArray[++top] = value;}//弹出栈顶的元素并返回public int pop(int value) {//判断栈是否为空if(isEmpty()) {throw new RuntimeException("栈空,没有数据~~");}value = stackArray[top--];return value;}//查看栈顶的元素public int peek() {//判断栈是否为空if(isEmpty()) {throw new RuntimeException("栈空,没有数据~~");}return stackArray[top];}// 显示栈中的数据-从栈顶开始显示public void list() {// 判断是否栈空if (isEmpty()) {System.out.println("栈空~~");return;}//从栈顶开始展示数据for (int i = top; i >= 0; i--) {System.out.printf("stack[%d]=%d\n", i, stackArray[i]);}}//栈空public boolean isEmpty() {return top == -1;}//栈满public boolean isFull() {return top == (maxSize - 1);}
}
2、用队列实现栈
Java两个队列实现一个栈
3、用链表实现栈
/*** @Description* @Author Flag* @Date: 2021/7/20 8:53* @Version: 1.0**/
public class LinkedStackDome {public static void main(String[] args) {//测试一下LinkedStack是否正常//先创建一个ArrayStack对象->表示栈LinkedStack stack = new LinkedStack(4);String key = "";boolean loop = true;//用于控制是否退出Scanner scanner = new Scanner(System.in);while (loop){System.out.println("show:表示显示栈");System.out.println("exit:退出程序");System.out.println("push:表示添加元素到栈(入栈)");System.out.println("pop:表示从栈取出数据(出战)");System.out.println("请输入你的选择:");key = scanner.next();switch (key){case "show":stack.show();break;case "exit":scanner.close();loop = false;break;case "push":System.out.println("请输入一个数字");int i = scanner.nextInt();stack.push(i);break;case "pop":try{int pop = stack.pop();System.out.println("出栈的数据:"+pop);} catch (Exception e){System.out.println(e.getMessage());}break;default:break;}}}}class LinkedStack{//定义栈的大小private int maxSize;//链表模拟栈,private LinkedStackNode first;//top表示栈顶,初始化是-1private int top;/*** 构造方法* @param maxSize 栈的大小*/public LinkedStack(int maxSize) {this.maxSize = maxSize;top = -1;}/*** 判断栈是否满了* @return*/public boolean isFull(){return top+1 == maxSize;}/*** 入栈* @param value 入栈的元素*/public void push(int value){//1、判断栈是否满了if(this.isFull()){System.out.println("栈已经满了,不能再添加元素");return;}//2、新创建一个节点,用于添加到链表上LinkedStackNode node = new LinkedStackNode(value);//3、将top++,表示链表中的元素新增了一个top++;//4、判断头元素是否为null,如果是null,代表是第一个元素,则直接让新元素当第一个元素if(first == null){first = node;return;}//5.如果头元素不是null,则证明,此时链表中已经有元素,则将新元素添加上即可//5.1获取到链表的尾部LinkedStackNode middleNode = first;while (middleNode.getNext() != null){middleNode = middleNode.getNext();}//5.2将链表添加上去middleNode.setNext(node);}/*** 出栈* @return 出栈的元素*/public int pop(){//1.判断栈是否为nullif(this.isEmpty()){throw new RuntimeException("栈中没有元素");}//2.将链表的数量减一top -- ;//3.如果链表中是否只有一个元素if(first.getNext() == null){LinkedStackNode popNode = this.first;this.first = null;return popNode.getNumber();}//4.如果链表中有不只一个元素//4.1.定义一个中间变量,让他指向链表的最后一个元素,即最后要出栈的元素LinkedStackNode lastNode = first;//4.2.定义一个中间变量,用来用来获取到比lastNode前一个元素,‘//因为是单向链表,我们出栈后,要置空指向最后一个元素的指针,所以需要找到最有一个元素的前一个元素进行操作LinkedStackNode beforeLastNode = null;//4.2.遍历链表,直到lastNode是最后一个元素,此时,如果链表中只有一个元素,则while (lastNode.getNext() != null){//将lastNode给到beforeLastNode//然后lastNode向后移动//此时就构造出 beforeLastNode在lastNode前一个位置的情况beforeLastNode = lastNode;lastNode = lastNode.getNext();}//4.3.此时将最后一个元素的前一个元素的next指针变成null,则相当于舍弃掉了最后一个元素beforeLastNode.setNext(null);//4.3.返回lastNode的编号return lastNode.getNumber();}/*** 显示栈的元素*/public void show(){//判断栈是否为nullif(this.isEmpty()){System.out.println("栈中无元素");return;}//定义一个新的链表节点LinkedStackNode newLinedStackHead = null;//正向遍历原始链表,将链表的每一个元素,都放到新的链表的第一个元素//因为前面做了判断,所以first不可以为nullLinkedStackNode oldLinkedStackNode = first;//直到原始链表元素为null时,结束while (oldLinkedStackNode != null){LinkedStackNode middleNode = new LinkedStackNode(oldLinkedStackNode.getNumber());if(newLinedStackHead == null){newLinedStackHead = middleNode;} else {middleNode.setNext(newLinedStackHead);newLinedStackHead = middleNode;}//移动原始链表的位置oldLinkedStackNode = oldLinkedStackNode.getNext();}while (newLinedStackHead != null){System.out.println(newLinedStackHead.getNumber());newLinedStackHead = newLinedStackHead.getNext();}}/*** 判断栈是否为null* @return 结果*/public boolean isEmpty(){return top == -1;}
}/*** 链表栈的节点*/
class LinkedStackNode{private int number;private LinkedStackNode next;public LinkedStackNode(int number) {this.number = number;}public int getNumber() {return number;}public LinkedStackNode getNext() {return next;}public void setNext(LinkedStackNode next) {this.next = next;}
}
栈的应用
1、栈的应用——递归
1)、递归的定义
递归是一种重要的程序设计方法。简单地说,若在一个函数、过程或数据结构的定义中又应用了它自身,则这个函数、过程或数据结构称为是递归定义的,简称递归。
它通常把一个大型的复杂问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的代码就可以描述岀解题过程所需要的多次重复计算,大大减少了程序的代码量但在通常情况下,它的效率并不是太高。
2)、斐波那契数列
2、栈的应用——四则运算表达式求值
1)、后缀表达式计算结果
2)、中缀表达式转后缀表达式
笔记
相关文章:
栈 之 如何实现一个栈
前言 栈最鲜明的特点就是后进先出,一碟盘子就是类似这样的结构,最晚放上去的,可以最先拿出来。本文将介绍的是如何自己实现一个栈结构。 栈的操作 栈是一种先进后出(Last-In-First-Out, LIFO)的数据结构,…...
uni-app:自带的消息提示被遮挡的解决办法(自定义消息提示框)
效果: 代码: 1、在最外层或者根组件的模板中添加一个容器元素,用于显示提示消息。例如: <div class"toast-container" v-if"toastMessage"><div class"toast-content">{{ toastMessa…...
PHP设备检验系统Dreamweaver开发mysql数据库web结构php编程计算机网页代码
一、源码特点 PHP设备检验系统是一套完善的web设计系统,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 下载地址 https://download.csdn.net/download/qq_41221322/88306259 php设备检验系统1 …...
Windows 可以使用以下快捷键打开终端(命令提示符)
Windows 可以使用以下快捷键打开终端(命令提示符) 使用快捷键 Win R 打开 “运行” 对话框,然后输入 “cmd” 并按下 Enter 键。这将打开默认的命令提示符窗口。 使用快捷键 Ctrl Shift Esc 打开任务管理器,然后在 “文件” …...
Netty编程面试题
1.Netty 是什么? Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。Netty是基于nio的,它封装了jdk的nio,让我们使用起来更加方法灵活。 2.Netty 的特点是什么? 高并发&a…...
math_review
topics mathmatics supreme and optimumNorm and Linear producttopology of R*Continuious Function supreme and optimum Def 1: 非空有界集合必有上确界 common norm (1) x ∈ \in ∈ Rn, ||x||2 x 1 2 x 2 2 . . . x n 2 \sqrt {x_1^2x_2^2...x_n^2} x12x22.…...
肖sir__设计测试用例方法之场景法04_(黑盒测试)
设计测试用例方法之场景法 1、场景法主要是针对测试场景类型的,顾也称场景流程分析法。 2、流程分析是将软件系统的某个流程看成路径,用路径分析的方法来设计测试用例。根据流程的顺序依次进行组合,使得流程的各个分支能走到。 举例说明&…...
plt函数显示图片 在图片上画边界框 边界框坐标转换
一.读取图片并显示图片 %matplotlib inline import torch from d2l import torch as d2l读取图片 image_path ../data/images/cat_dog_new.jpg # 创建画板 figure d2l.set_figsize() image d2l.plt.imread(image_path) d2l.plt.imshow(image);二.给出一个(x左上角,y左上角,…...
运行期获得文件名和行号
探索动态日志模块的实现 最初的目标是创建一个通用的日志模块, 它具有基本的日志输出功能并支持重定向. 这样, 如果需要更换日志模块, 可以轻松实现. 最初的构想是通过函数重定向, 即使用 dlsym 来重定向所有函数以实现打印功能. 然而, 这种方法引发了一个问题, 即无法正确获…...
数组操作UNIAPP
字符串转数组 let string "12345,56789" string.split(,) // [12345,56789] 数组转字符串 let array ["123","456"] array.join(",") // "123,456" 数组元素删除 let array [123,456] // 删除起始下标为1࿰…...
MySQL——无法打开MySQL8.0软件安装包或者安装过程中失败,如何解决?
在运行MySQL8.0软件安装包之前,用户需要确保系统中已经安装了.Net Framework相关软件,如果缺少此软件,将不能正常地安装MySQL8.0软件。 解决方案:到这个地址 https://www.microsoft.com/en-us/download/details.aspx?id42642…...
DB2存储过程如何编写和执行
db2执行文件参数: -t 表示语句使用默认的语句终结符——分号; -v 表示使用冗长模式,这样 DB2 会显示每一条正在执行命令的信息; -f 表示其后就是脚本文件; -z表示其后的信息记录文件用于记录屏幕的输出&am…...
SpringBoot + FFmpeg实现一个简单的M3U8切片转码系统
简介 在本文中,我们将使用SpringBoot和FFmpeg来实现一个简单的M3U8切片转码系统。M3U8是一种常用的视频流媒体播放列表格式,而FFmpeg则是一个强大的音视频处理工具。 技术栈 SpringBoot:一个基于Spring框架的快速开发平台。FFmpeg…...
SpringCloud(35):Nacos 服务发现快速入门
本小节,我们将演示如何使用Spring Cloud Alibaba Nacos Discovery为Spring cloud 应用程序与 Nacos 的无缝集成。 通过一些原生的spring cloud注解,我们可以快速来实现Spring cloud微服务的服务发现机制,并使用Nacos Server作为服务发现中心,统一管理所有微服务。 1 Spring…...
OSPF实验:配置与检测全网互通
文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. 配置 IP 地址2. 按照图示分区域配置 OSPF ,实现全网互通3. 检查是否全网互通 摘要: 本篇文章介绍了一个 OSPF(Open Shortest Path First)实验,旨在…...
常见的五种设计模式
https://www.runoob.com/design-pattern/factory-pattern.html 单例模式 **意图:**保证一个类仅有一个实例,并提供一个访问它的全局访问点。 **主要解决:**一个全局使用的类频繁地创建与销毁。 **何时使用:**当您想控制实例数目…...
pandas读取一个 文件夹下所有excel文件
我这边有个需求,是要求汇总一个文件夹所有的excel文件, 其中有.xls和 .xlsx文件,同时还excel文件中的数据可能还不一致,会有表头数据不一样需要一起汇总。 首先先遍历子文件夹并读取Excel文件: 使用os库来遍历包含子文…...
Python网页请求超时如何解决
在进行网络爬虫项目时,我们经常需要发送大量的请求来获取所需的数据。然而,由于网络环境的不稳定性,请求可能会因为超时而失败。请求超时可能导致数据获取不完整,影响爬虫的效率和准确性。此外,频繁的请求超时可能会被…...
虚幻引擎集成web前端<二>:UE4 像素流 与 web 通信
Vue 和 Unreal Engine (UE) 之间的通信可以通过多种方式实现。以下是一些建议的方法: 使用 Websockets:Websockets 是一种在客户端和服务器之间进行双向通信的技术。在 Vue 端,你可以使用一个 Websockets 库(如 socket.io…...
618-基于FMC+的XCVU3P高性能 PCIe 载板 设计原理图
基于FMC的XCVU3P高性能 PCIe 载板 一、板卡概述 板卡主控芯片采用Xilinx UltraScale16 nm VU3P芯片(XCVU3P-2FFVC1517I)。板载 2 组 64bit 的DDR4 SDRAM,支持 IOX16或者 JTAG 口,支持PCIe X 16 ReV3.0以及 FMC 扩展接口。…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
