如何使用TensorFlow完成线性回归
线性回归是一种简单的预测模型,它试图通过线性关系来预测目标变量。在TensorFlow中,我们可以使用tf.GradientTape来跟踪我们的模型参数的梯度,然后用这个信息来优化我们的模型参数。
以下是一个简单的线性回归的例子:
pythonimport numpy as np
import tensorflow as tf# 生成一些样本数据
np.random.seed(0)
x_train = np.random.rand(100, 1).astype(np.float32)
y_train = 2 * x_train + np.random.randn(100, 1).astype(np.float32) * 0.3# 定义线性回归模型
class LinearRegression:
def __init__(self, learning_rate=0.01):
self.learning_rate = learning_rate
self.weights = tf.Variable(tf.zeros([1]))
self.bias = tf.Variable(tf.zeros([1]))def __call__(self, x):
return self.weights * x + self.biasdef loss(self, y_pred, y_true):
return tf.reduce_mean(tf.square(y_pred - y_true))def train(self, x, y):
with tf.GradientTape() as tape:
y_pred = self(x)
loss = self.loss(y_pred, y)
gradients = tape.gradient(loss, [self.weights, self.bias])
self.weights.assign_sub(self.learning_rate * gradients[0])
self.bias.assign_sub(self.learning_rate * gradients[1])# 训练模型
model = LinearRegression()
for epoch in range(1000):
model.train(x_train, y_train)
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {model.loss(model(x_train), y_train)}")
在这个例子中,我们首先创建了一些训练数据。我们的模型就是一维线性回归,即预测目标变量是输入的线性函数。我们使用tf.GradientTape跟踪模型参数的梯度,并使用这个梯度来更新我们的模型参数。我们在每个epoch都遍历所有的训练数据,并打印出每100个epoch的损失。
在上述代码中,我们定义了一个LinearRegression类,它包含模型的权重(weights)和偏差(bias),并实现了三个方法:__call__、loss和train。
__call__方法定义了模型如何根据输入的x来预测y。loss方法计算预测值与真实值之间的均方误差。train方法使用梯度下降法来更新模型的权重和偏差。
然后,我们创建了一个LinearRegression实例并进行了1000次迭代训练。在每次迭代中,我们都会通过调用model.train(x_train, y_train)来更新模型的权重和偏差。并且每100个epoch会打印出当前的损失。
这是一个非常基础的线性回归模型,实际使用中可能需要对数据进行归一化、处理缺失值、选择不同的损失函数和优化算法等操作。
相关文章:
如何使用TensorFlow完成线性回归
线性回归是一种简单的预测模型,它试图通过线性关系来预测目标变量。在TensorFlow中,我们可以使用tf.GradientTape来跟踪我们的模型参数的梯度,然后用这个信息来优化我们的模型参数。 以下是一个简单的线性回归的例子: pythonimpo…...
@controller和@RestController的区别
//controller和RestController的区别:RestController的返回值就是结果被输出在浏览器 //controller的返回值会到resources的templates下找 返回值".html" 页面 1.controller 简单的来说,当我们的返回值需要跳转大另一个页面时候,我们就会使…...
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 论文阅读
论文信息 题目:GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 作者:Zhichao Yin and Jianping Shi 来源:CVPR 时间:2018 Abstract 我们提出了 GeoNet,这是一种联合无监督学习框架&a…...
蓝桥杯官网填空题(振兴中华)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小明参加了学校的趣味运动会,其中的一个项目是:跳格子。 地上画着一些格子,每个格子里写一个字,如下所示࿱…...
node基础之七:Mongodb 数据库
下载地址:https://www.mongodb.com/try/download/community v:5.0.20 platform:window package:zip 复制到 c 盘/Programs Files c 盘创建 data/db 文件夹 默认存放数据地址 在 bin 目录下启动数据库 mongod, 客户端连接数据库…...
基于Python和mysql开发的智慧校园答题考试系统(源码+数据库+程序配置说明书+程序使用说明书)
一、项目简介 本项目是一套基于Python和mysql开发的智慧校园答题考试系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。 包含:项目源码、项目文档、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都…...
OPPO/真我手机ColorOS13系统解账户锁-移除手机密码图案锁方法
在搞机之前,请确定自己的手机不是非法获取,本文只讲叙ColorOS13系统解锁方法,仅为个人测试研究出来的经验,未对官方系统进行任何修改。只推荐专业维修师傅从维修的角度进行解锁,不推荐个人用户对非自己的手机进行非法破…...
阿里云大数据实战记录9:MaxCompute RAM 用户与授权
文章目录 问题来源:maxcompute 管理员无法访问敏感列?主线问题:如何提高用户等级衍生问题1:怎么知道自己的等级和表单的等级衍生问题2:为什么 dataworks 空间管理员也没有设置等级的权限?衍生问题3…...
JavaScript基础07——变量拓展-数组
哈喽,大家好,我是雷工! 每天打卡学习一点点,今天继续学习JavaScript基础知识,以下是学习笔记。 一、数组的基本介绍 数组 (Array)——一种将一组数据存储在单个变量名下的优雅方式。 数组的作用和变量一样…...
go-zerogo web集成redis实战
前言 上一篇:go-zero&go web集成JWT和cobra命令行工具实战 从零开始基于go-zero搭建go web项目实战-03集成redis实战 源码仓库地址 源码 https://gitee.com/li_zheng/treasure-box golang redis 客户端 Go-Redis 地址: GitHub: https://github.…...
油猴浏览器(安卓)
油猴浏览器页面设计非常简约,在主页上还为小伙伴们推荐了很多的常用书签,像油猴脚本,常用导航,新闻,热搜类的,快递查询等等,可以设置快捷访问,把常用到的一些网站设置在主页上。 浏览…...
Redis 6.0多线程模型比单线程优化在哪里了
推荐阅读 项目实战:AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 史上最全文档AI绘画stablediffusion资料分享 AI绘画关于SD,MJ,GPT,SDXL百科全书 AI绘画 stable…...
[hello,world]这个如何将[ ] 去掉
[hello,world]这个如何将[ ] 去掉? 你可以使用编程语言中的字符串处理函数来去掉方括号。以下是一个示例代码,使用Python的strip()函数去掉方括号: text "[hello,world]" text text.strip("[]") print(text)输出为&a…...
机器学习_个人笔记_周志华(更新中......)
第1章 绪论 1.1 引言 形成优秀的心理表征,自然能成为领域内的专家。 系统1 & 系统2。 机器学习:致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。主要研究计算机从数据中产生model的算法,即“learning algori…...
嵌入式Linux驱动开发(LCD屏幕专题)(二)
一、结合APP分析LCD驱动程序 1、open app: open("/dev/fb0", ...) 主设备号: 29, 次设备号: 0 -------------------------------------------------------------- kernel:fb_open // fbmem.cstruct fb_info *info;info get_fb_info(fbidx);if (info->fbop…...
React的jsx的用法
React是一个流行的JavaScript库,用于构建用户界面。它使用一种名为JSX的语法扩展来描述组件的结构和样式。JSX是React的核心语言之一,它允许开发人员在JavaScript中编写HTML,从而使代码更加简洁和易于阅读。 JSX是一种语法扩展,它…...
Ei Scopus检索 | 2024年第四届能源与环境工程国际会议(CoEEE 2024)
会议简介 Brief Introduction 2024年第四届能源与环境工程国际会议(CoEEE 2024) 会议时间:2023年5月22日-24日 召开地点:意大利米兰 大会官网:www.coeee.org CoEEE 2024将围绕“能源与环境工程”的最新研究领域而展开,为研究人员、…...
习题练习 C语言(暑期第四弹)
自我小提升! 前言一、数组二、指针运算三、统计每个月兔子的总数四、双指针的应用五、判断指针六、珠玑妙算七、两数之和八、数组下标九、指针十、寻找峰值十一、二级指针十二、大端小端十三、无符号参数十四、数对十五、截取字符串总结 前言 重要的事说三遍&#…...
【docker快速部署微服务若依管理系统(RuoYi-Cloud)】
工作原因,需要一个比较完整的开源项目测试本公司产品。偶然发现RuoYi-Cloud非常适合,它有足够多的中间件,而且官方提供docker安装,但我本人在安装过程中遇到了很多坑,在这里记录一下防止下次会再次遇到。 项目地址 ht…...
面试求职-简历编写技巧
没有高水平简历 只有高匹配的简历 试问一下:如果一个非常牛逼的软件工程的硕士,投递市场营销岗位,结果会是什么样呢? 这位同学大概率没办法通过简历。 不是因为他不够优秀,而是因为简历和岗位不够匹配。 在公司的招…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
分布式光纤声振传感技术原理与瑞利散射机制解析
分布式光纤传感技术(Distributed Fiber Optic Sensing,简称DFOS)作为近年来迅速发展的新型感知手段,已广泛应用于边界安防、油气管道监测、结构健康诊断、地震探测等领域。其子类技术——分布式光纤声振传感(Distribut…...
