当前位置: 首页 > news >正文

JVM优化常用命令

  • jps

列出正在运行的虚拟机进程

jps
  • top

列出线程CPU或内存占用

top
top -Hp pid  //列出pid全部线程
  • jstat

监视虚拟机运行状态信息

jstat -gc pid 5000   //每隔5s打印gc情况
  • jmap

jmap -heap pid   //输出jvm内存情况
jmap -histo:live pid | more  //查看堆内存中的对象数量和大小
jmap -dump:format=b,file=xxx pid  //生成堆存储快照,使用mat等工具分析
  • jstack

生成虚拟机当前时刻的线程快照,帮助定位线程出现长时间停顿的原因

jstack -l 30386 >> /xx/logs/xxx.log   //导出线程情况
jstack pid |grep -A 200 nid   //查询具体线程情况
printf "%x\n" pid   //10进制转16进制

一些JVM参数

4.1.设定堆内存大小

  • -Xms:启动JVM时的堆内存空间。

  • -Xmx:堆内存最大限制。

  • -Xmn:设置年轻代大小整个堆大小=年轻代大小 + 年老代大小 + 持久代大小,Sun官方推荐配置为整个堆的3/8

  • -XX:PermSize=128M设置持久代大小

  • -XX:MaxPermSize=128M设置持久代最大值,此值可以设置与-XX:PermSize相同,防止持久代内存伸缩,持久代设置很重要,一般预留其使用空间的1/3.

4.2.设定新生代大小。

  • -XX:NewRatio:新生代和老年代的占比。

  • -XX:NewSize:新生代空间。

  • -XX:SurvivorRatio:伊甸园空间和幸存者空间的占比。

  • -XX:MaxTenuringThreshold:对象进入老年代的年龄阈值。

4.3.设定垃圾回收器

  • -XX:+UseSerialGC 开启串行收集器

  • -XX:+UseParallelGC开启年轻代并行收集器,JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值

  • -XX:+UseParallelOldGC开启老年代并行收集器

  • -XX:+UseConcMarkSweepGC开启老年代并发收集器(简称CMS),可以和UseParallelGC一起使用

  • -XX:CMSInitiatingOccupancyFraction=70老年代内存使用比例到多少激活CMS收集器,这个数值的设置有很大技巧基本上满足(Xmx-Xmn)*(100-CMSInitiatingOccupancyFraction)/100>=Xmn否则会出现“Concurrent Mode Failure”,promotionfailed,官方建议数值为68

  • -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩

4.4.其他

  • -Xss: 设置每个线程的堆栈大小,设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右,这个参数对性能的影响比较大的

  • -XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论,linux64的java6默认值是15

  • -XX:ParallelGCThreads=设置并行垃圾回收的线程数。此值可以设置与机器处理器数量相等(逻辑cpu数),这个不确定是物理、还是逻辑使用默认就好

  • -XX:MaxGCPauseMillis=指定垃圾回收时的最长暂停时间,单位毫秒,如果指定了此值的话,堆大小和垃圾回收相关参数会进行调整以达到指定值,设定此值可能会减少应用的吞吐量

  • -XX:GCTimeRatio=设定吞吐量为垃圾回收时间与非垃圾回收时间的比值,公式为1/(1+N)。例如,-XX:GCTimeRatio=19时,表示5%的时间用于垃圾回收。默认情况为99,即1%的时间用于垃圾回收

  • -XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开

  • -XX:+DisableExplicitGC:禁止 java 程序中的 full gc, 如System.gc() 的调用. 最好加上, 防止程序在代码里误用了对性能造成冲击

  • -XX:+PrintGCDetails 打应垃圾收集的情况

  • -XX:+PrintGCTimeStamps 打应垃圾收集的情况

  • -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用

  • -XX:+PrintGCApplicationStoppedTime 打应垃圾收集时 , 系统的停顿时间

  • -XX:+PrintGC 打印GC情况

  • -XX:PrintHeapAtGC:打印GC前后的详细堆栈信息

相关文章:

JVM优化常用命令

jps列出正在运行的虚拟机进程jpstop列出线程CPU或内存占用top top -Hp pid //列出pid全部线程jstat监视虚拟机运行状态信息jstat -gc pid 5000 //每隔5s打印gc情况jmapjmap -heap pid //输出jvm内存情况 jmap -histo:live pid | more //查看堆内存中的对象数量和大小 jma…...

按键中断实验

gpio.c#include"gpio.h"//给gpio使能和设置为输入模式void hal_gpio_init(){//使能GPIOF控制器RCC->MP_AHB4ENSETR|(0x1<<5);//通过GPIOF_将pf9/pf7/pf8设置为输入模式 GPIOF->MODER&(~(0x3<<18));GPIOF->MODER&(~(0x3<<14));GPI…...

kubernetes入门介绍,从0到1搭建并使用

Kubernetes是一个容器编排系统&#xff0c;用于自动化应用程序部署、扩展和管理。本指南将介绍Kubernetes的基础知识&#xff0c;包括基本概念、安装部署和基础用法。 基础介绍 Kubernetes是Google开发的开源项目&#xff0c;是一个容器编排系统&#xff0c;可以自动化部署、…...

【C语言进阶】字符串函数与内存函数的学习与模拟实现

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;C语言进阶 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录1.字符串处理函数介…...

【JavaEE初阶】第一节.多线程(进阶篇 ) 常见的锁策略、CAS及它的ABA问题

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、常见的锁策略 1.1 乐观锁 vs 悲观锁 1.2 普通的互斥锁 vs 读写锁 1.3 重量级锁 vs 轻量级锁 1.4 自旋锁 vs 挂起等待锁 1.5 公平…...

Linux基础命令-pstree树状显示进程信息

Linux基础命令-uname显示系统内核信息 Linux基础命令-lsof查看进程打开的文件 Linux基础命令-uptime查看系统负载 文章目录 前言 一 命令介绍 二 语法及参数 2.1 使用man查看命令语法 2.2 常用参数 三 参考实例 3.1 以树状图的形式显示所有进程 3.2 以树状图显示进程号…...

keepalived+LVS配置详解

keepalivedLVS配置详解keepalived简介keepalived的应用场景keepalived工作原理VRRP协议核心组件分层工作工作状态LVS简介LVS三种模式NAT模式(网络地址映射)IPTUN模式(IP隧道)DR模式(直接路由)三种模式对比keepalivedLVS配置1.master配置2. keepalived配置文件3 修改keepalived配…...

Unity之C#端使用protobuf

什么是protobuf protobuf全称Protocol Buffers&#xff0c;由Google推出的一种平台、语言无关的数据交互格式&#xff0c;目前使用最广泛的一种数据格式&#xff0c;尤其在网络传输过程中&#xff0c;有很强的安全性&#xff0c;而且数据量比json和xml要小很多。 最主要的是pr…...

C++设计模式(18)——模板方法模式

亦称&#xff1a; Template Method 意图 模板方法模式是一种行为设计模式&#xff0c; 它在超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 问题 假如你正在开发一款分析公司文档的数据挖掘程序。 用户需要向程序输入各种格式…...

SQLserver 索引碎片

Oracle 不需要整理碎片&#xff0c;原因&#xff1f; 1. rowid 默认的索引是&#xff22;&#xff0d;树索引。索引建立在表中的一个或多个列或者是表的表达式上&#xff0c;将列值和行编号一起存储。行编号是唯一标记表中行的伪列。 行编号是物理表中的行数据的内部地址&am…...

【Storm】【二】安装

1 准备 1.1 准备linux服务器 本文搭建的是3节点的集群&#xff0c;需要3台linux服务器&#xff0c;我这里使用的是centos7版本的linux虚拟机&#xff0c;虚拟机网络配置如下&#xff1a; 主节点&#xff1a; master 192.168.92.90 从节点&#xff1a; slave1 192.168.92.…...

Android ConditionVariable

Android ConditionVariable 线程操作经常用到wait和notify&#xff0c;用起来稍显繁琐&#xff0c;而Android给我们封装好了一个ConditionVariable类&#xff0c;用于线程同步。提供了三个方法block()、open()、close()。 void block() //阻塞当前线程&#xff0c;直到条件为…...

Action Segmentation数据集介绍——Breakfast

文章目录简介细节Cooking actibitiesillustration of the actions论文讲解Breakfast&#xff08;The Breakfast Action Dataset&#xff09;简介 早餐动作数据集包括与早餐准备相关的10个动作&#xff0c;由18个不同厨房的52个不同的人执行。该数据集是最大的完全带注释的数据…...

横道图时间标尺在P6软件中的设置

卷首语 由于其直观简洁且易于管理的特性&#xff0c;使其成为展示项目活动顺序及时间安排的最常用的进度管理工具。 甘特图 甘特图&#xff08;Gantt Chart&#xff09;&#xff0c;又称为横道图或棒条图&#xff0c;是最早的项目进度管理工具之一。由于其直观简洁且易于管理…...

空间复杂度(超详解+例题)

全文目录引言空间复杂度例题test1test2&#xff08;冒泡排序&#xff09;test3&#xff08;求阶乘&#xff09;test4&#xff08;斐波那契数列&#xff09;总结引言 在上一篇文章中&#xff0c;我们提到判断一个算法的好坏的标准是时间复杂度与空间复杂度。 时间复杂度的作用…...

Document-Level event Extraction via human-like reading process 论文解读

Document-Level event Extraction via human-like reading process 论文&#xff1a;2202.03092v1.pdf (arxiv.org) 代码&#xff1a;无 期刊/会议&#xff1a;ICASSP 2022 摘要 文档级事件抽取(DEE)特别困难&#xff0c;因为它提出了两个挑战:论元分散和多事件。第一个挑战…...

H5盲盒抽奖系统源码

盲盒抽奖系统4.0&#xff0c;带推广二维码防洪炮灰功能和教程。 支持微信无限回调登录 标价就是源码价格&#xff0c;vuetp5框架编写&#xff0c;H5网页&#xff0c;前后端分离 此源码为正规开发&#xff0c;正版产品已申请软著。 开源无加密无授权&#xff0c;可以二开使用…...

低代码平台和无代码平台哪个更适合开发企业管理系统?

编者按&#xff1a;本文分析了开发企业管理系统所需要的平台特性&#xff0c;并根据这些特点和低代码无代码的优劣比较&#xff0c;得出低代码平台更适合开发企业管理系统。关键词&#xff1a;私有化部署&#xff0c;可视化设计&#xff0c;源码交付&#xff0c;数据集成&#…...

75岁彪马再发NFT 复活美洲狮IP

在“运动品牌Web3”的潮流里&#xff0c;彪马&#xff08;PUMA&#xff09;绝对算是发烧友级别。2月22日&#xff0c;这家德国服装品牌的新NFT又来了&#xff0c;总量10000个Super PUMA NFT中&#xff0c;将有4000个以0.15 ETH&#xff08;约为255美元&#xff09;价格正式公售…...

大学生成人插画培训机构盘点

成人插画培训机构哪个好&#xff0c;成人学插画如何选培训班&#xff1f;给大家梳理了国内较好的插画培训机构排名&#xff0c;各有优势和特色&#xff0c;供大家参考&#xff01; 一&#xff1a;国内成人插画培训机构排名 1、轻微课&#xff08;五颗星&#xff09; 主打课程有…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...