手撕八大排序(上)
排序的概念及其引用:
排序的概念:
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的;画图说明:
排序前A在B前面,排序后说明该排序稳定,如果排序后B在A前面则说明不稳定。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
八大排序我们一般将其分为五类,分别为:
一: 插入排序
1. 直接插入排序
2. 希尔排序
二: 选择排序
1.直接选择排序
2.堆排序
三: 交换排序
1. 冒泡排序
2. 快速排序
四: 归并排序
五:基数排序
插入排序:
直接插入排序:
基本思路:
思路:从第二个数开始,假设此数为
tmp
,逐个往前进行比对,如果前数大于tmp
,就将前数值赋值到tmp
处,然后继续往前比对,直到找到小于或等于tmp
的数(或者比对至数据首)就停止,最后将tmp
的值赋值到此处就行了
动图演示:
代码:
public void insertSort(int[] array) {if (array.length == 0) {return;}for (int i = 1; i < array.length; i++) {int temp = array[i];int j = i - 1;for ( ; j >= 0 ; j--) {if (array[j] > temp) {array[j + 1] = array[j];} else {break;}}array[j + 1] = temp;}}
直接插入排序总结:
1. 集合元素越接近有序,时间效率越高
2. 时间复杂度: O(N^2)
3. 空间复杂度: O(1)
4. 稳定性: 稳定
希尔排序:
前言:
既然同为插入排序,那必然是有共同点的。
希尔排序是建立在直接插入排序基础上,经过优化的插入排序。
希尔排序分为两步:
- 1、预排序,使得数据尽可能接近有序
- 2、直接插入排序,最后调用一次直接插入排序,快速的完成排序
基本思路:
思路:
预排序
是通过区间划分实现的,假设当前区间为gap
,那么1、1+gap*n
可以分成一组,同理2、3、4
都可以分,将这些组分别进行直接插入排序(数据少,效率高)。每完成一次分组排序,gap
就会缩小,直到gap
为1时,进行一次直接插入排序
,整个希尔排序
就完成了
代码如下:
public static void shellSort(int[] array) {int gap = array.length;while (gap > 1) {shell(array,gap);gap /= 2;}//整体进行插入排序shell(array,1);}public static void shell(int[] array,int gap) {for (int i = 1; i < array.length; i++) {int temp = array[i];int j = i - gap;for ( ; j >= 0 ; j-= gap) {if (array[j] > temp) {array[j + gap] = array[j];} else {break;}}array[j + gap] = temp;}}
动图演示:
预排序:
直接插入排序:
希尔排序总结:
1. 希尔排序的时间复杂度要用到高数中的知识,“根据大量的数据的得到了局部的结论...”,我们直接记答案即可:O(N^1.25)
2. 空间复杂度: O(1);
我们仅仅只创建了一个gap
3. 稳定性: 不稳定;
我们在排序过程中gap会有多次的改变,不同的组别中可能会发生交换现象。
选择排序:
直接选择排序:
基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完
代码:
//选择排序public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i + 1; j < array.length; j++) {if(array[j] < array[minIndex]) {minIndex = j;}}int temp = array[i];array[i] = array[minIndex];array[minIndex] = temp;}}
如果像这样去遍历的话,时间复杂度为O(N^2)不算是个很优解我们可以考虑对此进行优化
优化:每次遍历选最大与最小,分别与 end
值和 begin
值交换
动图演示:
直接选择排序总结:
1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定
堆排序:
我们之前也介绍过堆排序,PriorityQueue本质就是个小根堆,这里就不过多介绍了。
思路:堆排序
用到了堆的知识,如果想排升序的话建大堆,因为大堆中堆顶是最大值,将堆顶值与堆低值交换后,执行向下调整,使其再次变为大堆,就这样反复交换、调整,堆排序
就完成了。
/*** 堆排序* @param array 目标数组*/public static void heapSort(int[] array) {createBigHeap(array);int end = array.length - 1;while (end > 0) {swap(array,0,end);shiftDown(array,0, end);end--;}}public static void createBigHeap(int[] array) {//父下标 从倒数第二层开始int parent = (array.length - 1 -1) / 2;for (; parent > 0 ; parent-- ) {shiftDown(array,parent, array.length);}}public static void shiftDown(int[] array,int parent,int len) {int child = 2*parent + 1;while (child < len) {if (child + 1 < len && array[child] < array[child + 1]) {child++;}if (array[child] > array[parent]) {swap(array, parent, child);parent = child;child = 2 * parent + 1;} else {break;}}}private static void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
向上调整动图演示:
堆排序总结:
1. 堆排序使用堆来选数相对于直接插入排序,效率就高了很多。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(1)
4. 稳定性:不稳定
本文只是排序的上半部分,涉及的排序思想都还算简单,下一篇文章中将会介绍排序大哥:快速排序,知识点很难敬请期待吧。
相关文章:

手撕八大排序(上)
排序的概念及其引用: 排序的概念: 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有…...
clickhouse 怎么统计每天0点到10点的某个字段的数据量
比喻:统计最近一周0点到10点期间每天id的数量 日期:2023-03-23 09:02:22 日期全是这种格式 第一步先把日期转小时:先把小于10小时的查出来 toHour(card_time)<10 select toDate(t.dates) as dates,sum(t.count) as count from ( se…...
[qiankun]-图片加载问题
[qiankun]-图片加载问题开发版本图片加载报错现象描述分析解决方案base64的展示格式静态资源的展示方式取消hash的取值方式,并在主应用中添加图片设置图片的绝对路径根据环境动态设置图片的绝对路径nginx转发方式开发版本 "vue": "^3.2.45", &…...

关于upstream的八种回调方法
1 creat_request调用背景:用于创建自己模板与第三方服务器的第一次连接步骤1) 在Nginx主循环(ngx_worker_process_cycle方法) 中,会定期地调用事件模块, 以检查是否有网络事件发生。2) 事件模块…...
0303泰勒公式-微分中值定理与导数的应用
文章目录1 引入2 泰勒中值定理2.1 泰勒多项式3.2 泰勒中值定理13.3 泰勒中值定理22.4 误差估计4 麦克劳林公式5 常见麦克劳林公式6 泰勒公式相关例题6.1 将函数展成指定的泰勒公式6.1.1 公式法6.1.2 间接展法(变量替换)6.2 利用泰勒公式求极限6.3 确定无…...
日常运维基础命令
commandexplainps -f -u user_name显示指定用户的进程ps aux --sort-pcpu,pmem先以cpu使用量进行排序,cpu使 用一样,以内存使用率排序ps -ef --forest显示ACLII进程数ps --ppid 28208显示父进程的子进程ps -p 14447 -L显示进程的线程ps -e -o pid&#x…...

人员行为识别系统 TensorFlow
人员行为识别系统人员行为识别系统通过TensorFlow深度学习技术,人员行为识别算法对画面中区域人员不按要求穿戴、违规抽烟打电话、睡岗离岗以及作业流程不规范实时分析预警,发现违规行为立即抓拍告警。深度学习应用到实际问题中,一个非常棘手…...
ES-倒排索引BKD原理skiplist
1.Elasticsearch数据存储结构FST、skiplist、BKD-tree、LSM-tree Elasticsearch数据结构存储流程_善思的博客-CSDN博客_elasticsearch 数据结构 number?keyword?傻傻分不清楚 - Elastic 中文社区 ElasticSearch实战(六)-Skip List 跳表算法…...

每天一道大厂SQL题【Day12】微众银行真题实战(二)
每天一道大厂SQL题【Day12】微众银行真题实战(二) 大家好,我是Maynor。相信大家和我一样,都有一个大厂梦,作为一名资深大数据选手,深知SQL重要性,接下来我准备用100天时间,基于大数据岗面试中的经典SQL题&…...

带您了解TiDB MySQL数据库中关于日期、时间的坑
带您了解TiDB & MySQL数据库中关于日期、时间的坑时间的基础知识什么是时间计算时间的几种方法世界时(UT)协调世界时(UTC)国际原子时(TAI)时区的概念中国所在的时区操作系统的时区datetimedatectl数据库…...

【华为OD机试模拟题】用 C++ 实现 - 求字符串中所有整数的最小和
最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...

harbor 仓库迁移升级
harbor 仓库迁移升级 harbor仓库安装数据传输仓库切换版本 v1.8.0 v2.3.5 harbor仓库安装 环境准备:安装docker详见:docker 的介绍和部署,并下载docker-compose详见:docker 三剑客compose。 现有支持的安装harbor仓库的方式有两…...
评论功能设计思路~
文章目录 评论功能设计框架1、定义2、目标3、动机4、评论类别**5、评论互动****6、评论区展示结构****6.1 主题式****6.2 平铺式****6.3 盖楼式****7、评论排序机制****8、评论加载形式****9、其他**结语评论功能设计框架 1、定义 评论是指针对于事物进行主观或客观的自我印象…...

算法训练营 day52 动态规划 买卖股票的最佳时机系列1
算法训练营 day52 动态规划 买卖股票的最佳时机系列1 买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣(LeetCode) 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票…...

3.基于分割的文本检测算法--DBNet++
文章目录1.概况2.DBNet中的主要方法2.1 网络结构2.2 适应特征图融合模块(Adaptive Scale Fusion Module, ASF)3.ASF模块的源码实现参考资料欢迎访问个人网络日志🌹🌹知行空间🌹🌹 1.概况 2022年02月份论文:Real-Time S…...
IOS打包、SDK接入记录等
IOS打包、SDK接入记录等 Mac上安装HCLR路径 /Applications/Unity/Hub/Editor/2019.4.40f1c1/Unity.app/Contents/il2cpp HCLR 指定4.40是要Unity启动打开的il2cpp,否则HCLR Installer他会报找不到MonoBleedingEdge Mac删除证书 只能点击钥匙串做上角的登录后&…...

【C++】类与对象(引入)
目录 前言 类的引入 类的定义 封装与访问限定符 封装 访问限定符 类的实例化 类的大小 this指针 特性 前言 🎶我们都知道,C语言是面向过程的编程,而C是面向对象的编程,更多体现在编程的关注点上。 🎶就拿洗…...

Redis 高级数据类型
文章目录一、Bitmaps:属性状态统计二、HyperLogLog:基数统计三、GEO:地理位置信息计算提示:以下是本篇文章正文内容,Redis系列学习将会持续更新 一、Bitmaps:属性状态统计 Bitmaps类型: 统计一…...
Java8 新特性-函数式接口
什么是函数式接口 先来看看传统的创建线程是怎么写的 Thread t1 new Thread(new Runnable() {Overridepublic void run() {System.out.println("t1");} }); t1.start();再来看看使用了函数式接口是怎么写的 Thread t2 new Thread(() -> System.out.println(&…...

这套软件测试试卷能打90分,直接入职字节吧
目录 一.填空 二、 判断题(正确的√,错误的╳)共10分,每小题1分 三、数据库部分:(共15分) 四、设计题。本题共 1 小题,满分 20分 一.填空 1、 系…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...