当前位置: 首页 > news >正文

强化学习-论文调研-泛化性能力度量

 1.[ICML2019]Quantifying Generalization in Reinforcement Learning

​    文章提出16000多个单智能体闯关游戏CoinRun,通过智能体在分割开的训练环境和测试环境上表现的性能作为RL泛化性的度量。具体而言作者通过”奔跑硬币泛化曲线“ (CoinRun Generalization Curves)来评价泛化性,训练和测试时关卡等级服从同分布,所以殉难联合测试表现得差异代表了过拟合程度。

​    结论:1. 更深的CNN网络有益于防止过拟合  2. L2正则化和冻肉皮 out 有益于泛化性,dropout作用更小( Empirically, the most effective dropout probability is p = 0.1 and the most effective L2 weight is w = 10−4 .) 3. 批归一化Batch Normalization 有益于泛化性(As we can see, batch normalization offers a significant performance boost.) 4. 增加策略随机性或者环境随机性,具体是增加、epsilon-greedy和ppo中的熵奖励(但可能因环境不同具体效果差异大,在状态转移高度随机的环境中增益小)

​    1.RL过拟合定义:在见过的环境上通关率高,没见过的通关率低(CoinRun Generalization Curves)

 2.[Arxiv 2018]*(173cited) Assessing Generalization in Deep Reinforcement Learning

​        本文提出一个泛化性的基准和实验方案——对一些经典的强化学习环境-gym 的参数进行内插和外插,内插即训练参数和测试参数相似,外插是不相似。

 3. [Arxiv 2021] A Survey of Generalisation in Deep Reinforcement Learning

​    在监督学习中骂我们将训练和测试的表现差距作为泛化性的测量,与它相似的在强化学习中,交换训练和测试顺序,泛化性的差距度量为

其中:

Ctrain 是一个训练的上下文集合,Ctest是一个测试的上下文集合,p(c)是文本的的分布,它影响的是初始状态的分布

上下文C是对智能体agent不可兼得,这使得CMDP成为一个POMDP。

论文指出在MDP中,奖励函数、转移函数、初始状态分布和发射函数都以上下文作为输入。除了动作空间是固定的外,上下文的选择决定了MDP的一切。

泛化性使用的方法,主要从哪几方面入手具有什么问题

相关文章:

强化学习-论文调研-泛化性能力度量

1.[ICML2019]Quantifying Generalization in Reinforcement Learning ​ 文章提出16000多个单智能体闯关游戏CoinRun,通过智能体在分割开的训练环境和测试环境上表现的性能作为RL泛化性的度量。具体而言作者通过”奔跑硬币泛化曲线“ (CoinRun Gener…...

CSS中图片旋转超出父元素解决办法

下面的两种解决办法都会导致图片缩小&#xff0c;可以给图片进行初始化的宽高设置 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">…...

QML、C++ 和 JS 三者之间的交互

QML、C++ 和 JS 三者之间的交互是 Qt Quick 应用开发的核心。以下是它们之间交互的常见方式: 从 QML 调用 C++ 函数要从 QML 调用 C++ 函数,您可以使用 Qt 的 QML 注册机制,例如 qmlRegisterType,将 C++ 类注册为 QML 类型。 C++ 代码: #include <QGuiApplication>…...

ProEasy机器人:TCP无协议通讯(socket通讯)时打印log日志

打印日志需要调用lua中的io相关文件函数与os相关时间函数&#xff0c;代码如下 --------TCP无协议视觉通讯------- function open_client_Vision() --连接视觉服务器 打开以太网作为客户端 repeat FreePort.ECM_CloseAll() --关闭所有链接 …...

算法通过村第六关-树白银笔记|层次遍历

文章目录 前言1. 层次遍历介绍2. 基本的层次遍历与变换2.1 二叉树的层次遍历2.2 层次遍历-自底向上2.3 二叉树的锯齿形层次遍历2.4 N叉树的层次遍历 3. 几个处理每层元素的题目3.1 在每棵树行中找出最大值3.2 在每棵树行中找出平均值3.3 二叉树的右视图3.4 最底层最左边 总结 前…...

SpringCloud理解篇

一、微服务概述 1、什么是微服务 目前的微服务并没有一个统一的标准&#xff0c;一般是以业务来划分将传统的一站式应用&#xff0c;拆分成一个个的服务&#xff0c;彻底去耦合&#xff0c;一个微服务就是单功能业务&#xff0c;只做一件事。 与微服务相对的叫巨石 。 2、微服…...

编写LED灯的驱动,实现三盏灯的控制

mychrdev.c #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/io.h> #include "head.h"unsigned int major; // 保存主设备号 char kbuf[128]{0}; unsigned int…...

Flink报错处理-1

在 flink job 运行一段时间后&#xff0c;观察日志发现出现了如下的 warn日志&#xff1a; The operator name {} exceeded the {} characters length limit and was truncated 完整的 warn 日志如下&#xff1a; The operator name TriggerWindow(GlobalWindows(), ListStat…...

bim与数字孪生智能建造的关系

随着建筑业数字化改革的推进&#xff0c;我们正迈入数字孪生时代&#xff0c;而真正实现建筑物数字孪生的智能建造&#xff0c;其基础前提是建造对象和建造过程的高度数字化&#xff0c;这样一个过程唯有依托BIM建立数据模型才能实现&#xff0c;真正达到智能建造或智慧运维。 …...

【Linux】进程篇(补):守护进程

文章目录 1. 补充1.1 查看1.2 控制进程组的方式 2. 创建守护进程step1. 忽略信号step2. 让自己不是组长step3. setsid 函数&#xff1a;给调用函数设置新的会话和进程组 IDstep4. chdir 函数&#xff1a;可以改变守护进程的工作路径step5. 处理文件描述符 0、1、2 守护进程类样…...

SpringMVC自定义视图完成步骤 和 视图解析的源码剖析

自定义视图完成步骤&#xff1a; ● 7.2.1自定义视图完成步骤 1. 自定义视图**:** 创建一个 View 的 bean, 该 bean 需要继承自 AbstractView, 并实现 renderMergedOutputModel 方法**.** 2. 并把自定义 View 加入到 IOC 容器中 3. 自定义视图的视图处理器&#xff0c;使用…...

合宙Air724UG LuatOS-Air lvgl字库

目录 LVGL 简介1. lvgl自带字库 特点使用场景2. lvgl加载外部字体 软件接口使用场景3. lvgl 矢量字体 软件接口硬件外接SPI字库芯片详细使用示例使用场景常见问题 LVGL 简介 LVGL字库有3种方式可以使用&#xff0c;刚接触的客户可能不太了解怎样选用&#xff0c;以下对这3种…...

C#,数值计算——指数微分(exponential deviates)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 指数偏差 /// Structure for exponential deviates. /// </summary> public class Expondev : Ran { private double beta { get; set; } /// <s…...

ADAS自动驾驶

文章目录 ADAS技术现状ADAS功能的主流方案ADAS控制器开发自动驾驶技术现状自动驾驶域控制器开发智能驾驶域控制器芯片选择 ADAS技术现状 自动驾驶辅助系统&#xff08;ADAS&#xff0c;Advanced Driver Assistance Systems&#xff09;是一种用于提高驾驶安全和舒适性的技术&a…...

Python从零到一构建项目

随着互联网的发展&#xff0c;网络上的信息量急剧增长&#xff0c;而获取、整理和分析这些信息对于很多人来说是一项艰巨的任务。而Python作为一种功能强大的编程语言&#xff0c;它的爬虫能力使得我们能够自动化地从网页中获取数据&#xff0c;大大提高了效率。本文将分享如何…...

使用todesk或者向日葵远程Ubuntu22.04系统的客户机黑屏

[TOC](使用todesk或者向日葵远程Ubuntu22.04系统的客户机黑屏) 目录 1. 故障现象 2. 分析 3. 解决办法 4. 参考文章 1. 故障现象 使用todesk或者向日葵远程客户机&#xff08;Ubuntu22.04系统&#xff09;时&#xff0c;显示黑屏 2. 分析 本故障可能是因为Ubuntu22.04的图…...

JBoss JMXInvokerServlet 反序列化漏洞复现(CVE-2015-7501)

一、漏洞说明 JBoss中/invoker/JMXInvokerServlet路径对外开放&#xff0c;JBoss的jmx组件支持反序列化。JBoss在/invoker/JMXInvokerServlet请求中读取了用户传入的对象&#xff0c;然后我们利用Apache Commons Collections中的Gadget执行任意代码。 二、影响版本 JBoss Enter…...

比Mojo慢68000倍,Python性能差的锅该给GIL吗?

# 关注并星标腾讯云开发者 # 每周1 | 鹅厂工程师带你审判技术 # 第3期 | 李志瑞&#xff1a;天使还是魔鬼&#xff1f;聊聊 Python GIL 9 月 7 日&#xff0c;新兴编程语言 Mojo 正式发布。Mojo 的最初设计目标是比 Python 快 35000 倍&#xff0c;近期该团队表示&#xff0c;因…...

CSS读书笔记

——————————————精华部分—————————————— 1、选择器 &#xff08;1&#xff09;基本选择器&#xff1a; 标签选择器 body{} 类选择器 class .class名称{} ID选择器 id #id名称{} 优先级&#xff1a;ID选择器 > 类选择器 > 标签选择器 &am…...

Qt使用QSqlDatabase remoeDatabase()连接提示仍在使用解决方案

问题描述 调用QSqlDatabase的removeDatabase函数的时候&#xff0c;出现了如下错误 QSqlDatabasePrivate::removeDatabase: connection 05465461654654 is still in use, all queries will cease to work官方示例 [static] void QSqlDatabase::removeDatabase(const QString &…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...