【力扣周赛】第 361 场周赛(⭐前缀和+哈希表 树上倍增、LCA⭐)
文章目录
- 竞赛链接
- Q1:7020. 统计对称整数的数目
- 竞赛时代码——枚举预处理
- Q2:8040. 生成特殊数字的最少操作(倒序遍历、贪心)
- 竞赛时代码——检查0、00、25、50、75
- Q3:2845. 统计趣味子数组的数目
- 竞赛时代码——前缀和+哈希表
- 相似题目——1590. 使数组和能被 P 整除(确实很相似的题目)
- Q4:2846. 边权重均等查询⭐⭐⭐⭐⭐
- 读题
- 解法——树上倍增、最近公共祖先LCA
- 相关题目
- 成绩记录
竞赛链接
https://leetcode.cn/contest/weekly-contest-361/
Q1:7020. 统计对称整数的数目
https://leetcode.cn/problems/count-symmetric-integers/

提示:
1 <= low <= high <= 10^4
竞赛时代码——枚举预处理
预处理所有数字是否为对称整数。
cnt[i]表示 <=i 的数字中有几个对称整数。
class Solution {static int[] cnt = new int[10005];// 预处理static {for (int i = 1; i <= 10001; ++i) {cnt[i] = cnt[i - 1];if (op(i)) cnt[i]++;}}public int countSymmetricIntegers(int low, int high) {return cnt[high] - cnt[low - 1];}// 判断x是否为对称整数public static boolean op(int x) {List<Integer> ls = new ArrayList<>();while (x != 0) {ls.add(x % 10);x /= 10;}int n = ls.size();if (n % 2 == 1) return false;int a = 0, b = 0;for (int i = 0; i < n; ++i) {if (i < n / 2) a += ls.get(i);else b += ls.get(i);}return a == b;}
}
Q2:8040. 生成特殊数字的最少操作(倒序遍历、贪心)
https://leetcode.cn/problems/minimum-operations-to-make-a-special-number/

提示
1 <= num.length <= 100
num 仅由数字 '0' 到 '9' 组成
num 不含任何前导零
竞赛时代码——检查0、00、25、50、75
检查位置最靠后的 00、25、50、75 的位置。
如果都不存在但是有 0 的话,答案则为 n - 1。(因为 0 可以不删)
class Solution {public int minimumOperations(String num) {int n = num.length();boolean f0 = false, f5 = false;for (int i = n - 1; i >= 0; --i) {char ch = num.charAt(i);if (ch == '0') {if (f0) return n - i - 2; // 检查00f0 = true;} else if (ch == '5') {if (f0) return n - i - 2;; // 检查50f5 = true;} else if (ch == '2' || ch == '7') {if (f5) return n - i - 2;; // 检查25,75}}if (f0) return n - 1; // 检查是否有0return n;}
}
Q3:2845. 统计趣味子数组的数目
https://leetcode.cn/problems/count-of-interesting-subarrays/

提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
1 <= modulo <= 10^9
0 <= k < modulo
竞赛时代码——前缀和+哈希表
使用前缀和数组可以快速求出从 l ~ r 之间满足要求的元素个数 cnt。
求出前缀和数组之后,从前往后依次枚举下标。对于当前的前缀和 sum[r],前面有若干个满足 (sum[r] - sum[x]) % modulo == k 的下标,这些下标的共同特征是:它们的值 sum[x] = (sum[r] - k + modulo) % modulo。
在枚举的过程中用哈希表 cnt 记录下各种 sum[i] 数值的数量,即 cnt[[sum[i]]++。
这样当枚举到 当前的前缀和为 sum[r] 时,与他相匹配的前缀和设为 x,则有 (sum[r] - x) % modulo == k,解得 x = (sum[r] - k + modulo) % modulo。 就可以快速找到 sum[r] 之前有几个可以和当前下标配对的下标 l,组成符合条件的区间 l ~ r,从哈希表中可以快速找出有 cnt[x] 的值个可以匹配。
即——在 r 之前有 cnt[x] 个下标,分别为 l1、l2…、lx 满足区间 li ~ r 之间的 cnt % modulo == k。
class Solution {public long countInterestingSubarrays(List<Integer> nums, int modulo, int k) {int n = nums.size();int[] x = new int[n], sum = new int[n + 1]; // x是原始数组,sum是前缀和数组Map<Integer, Integer> cnt = new HashMap<>(); // 存储各个余数为key的位置的数量cnt.put(0, 1);long ans = 0;for (int i = 0; i < n; ++i) {if (nums.get(i) % modulo == k) x[i] = 1;sum[i + 1] = (sum[i] + x[i]) % modulo; // 前缀和int r = sum[i + 1];ans += cnt.getOrDefault((r - k + modulo) % modulo, 0);cnt.merge(r, 1, Integer::sum);}return ans;}
}
相似题目——1590. 使数组和能被 P 整除(确实很相似的题目)
https://leetcode.cn/problems/make-sum-divisible-by-p/description/

提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= p <= 109
class Solution {public int minSubarray(int[] nums, int p) {int n = nums.length;int[] sum = new int[n + 1]; // 前缀和数组for (int i = 0; i < n; ++i) {sum[i + 1] = (sum[i] + nums[i]) % p;}int t = sum[n], ans = n;if (t == 0) return 0;Map<Integer, Integer> idx = new HashMap<>(); // 记录各个前缀和出现的下标idx.put(0, -1);for (int i = 0; i < n; ++i) {// x是当前前缀和,y是和x配对组成t的前缀和int x = sum[i + 1], y = (x - t + p) % p; // 如果之前有y,就尝试更新答案 if (idx.containsKey(y)) ans = Math.min(ans, i - idx.get(y));idx.put(x, i);}return ans == n? -1: ans;}
}
Q4:2846. 边权重均等查询⭐⭐⭐⭐⭐
https://leetcode.cn/problems/minimum-edge-weight-equilibrium-queries-in-a-tree/


提示:
1 <= n <= 10^4
edges.length == n - 1
edges[i].length == 3
0 <= ui, vi < n
1 <= wi <= 26
生成的输入满足 edges 表示一棵有效的树
1 <= queries.length == m <= 2 * 10^4
queries[i].length == 2
0 <= ai, bi < n
读题
给了一个 n 个节点的无向图。
每次查询,给两个点 a ,b。求 a 和 b 路径之间的所有边权,都变成相等需要操作几步——实际上是求 a 和 b 之间有几条边,其中出现次数最多的边权出现了几次。
解法——树上倍增、最近公共祖先LCA
关于这部分的知识点总结可见:【算法】树上倍增 & LCA
https://leetcode.cn/problems/minimum-edge-weight-equilibrium-queries-in-a-tree/solutions/2424060/lca-mo-ban-by-endlesscheng-j54b/

思路总结:
用树上倍增的思想维护:各个节点的深度、各个节点和父节点之间各种边权的数量。
求答案时,先将两个节点放在同一深度,实现方法是 y 先跳 d[y] - d[x] 的深度。
然后,x 和 y 一起往上跳。
class Solution {public int[] minOperationsQueries(int n, int[][] edges, int[][] queries) {// 临界表存储无向图List<int[]>[] g = new ArrayList[n]; Arrays.setAll(g, e -> new ArrayList<>());for (int[] e: edges) {int x = e[0], y = e[1], w = e[2] - 1;g[x].add(new int[]{y, w});g[y].add(new int[]{x, w});}int m = 32 - Integer.numberOfLeadingZeros(n); // n的二进制长度int[][] pa = new int[n][m]; // pa[x][i]表示节点x的第2^i个父节点for (int i = 0; i < n; ++i) {Arrays.fill(pa[i], -1); // -1表示没有这个父节点}int[][][] cnt = new int[n][m][26]; // cnt[x][i][w]记录节点x和父节点之间的边权为w的个数int[] depth = new int[n]; // 记录n个节点的深度// 使用 dfs 从0节点开始 初始化pa、cnt 计算depthdfs(0, -1, g, pa, cnt, depth);// 计算 pa 和 cnt// 先枚举i,(也就是先算出所有节点的爷爷、再求所有节点爷爷的爷爷...for (int i = 0; i < m - 1; ++i) { // 先枚举i,范围是0~m-2for (int x = 0; x < n; ++x) { // 再枚举xint p = pa[x][i]; // 取出节点x的第2^i个父节点if (p != -1) { int pp = pa[p][i]; // 取出节点x的第2^i个父节点的第2^i个父节点pa[x][i + 1] = pp; // 赋值——x的第2^(i+1)个父节点// 通过cnt[x][i]和cnt[p][i]计算 cnt[x][i+1]for (int j = 0; j < 26; ++j) {cnt[x][i + 1][j] = cnt[x][i][j] + cnt[p][i][j];}}}}// 计算答案int[] ans = new int[queries.length];for (int qi = 0; qi < queries.length; qi++) { // 枚举每一个查询int x = queries[qi][0], y = queries[qi][1];int pathLen = depth[x] + depth[y]; // x的深度和y的深度int[] cw = new int[26]; // 统计各种边权在x和y之间出现的次数// 让 x 作为深度更小的那个节点if (depth[x] > depth[y]) {int t = x;x = y;y = t;}// 让 y 和 x 在同一深度(先让 y 跳 depth[y]-depth[x])for (int k = depth[y] - depth[x]; k > 0; k &= k - 1) {int i = Integer.numberOfTrailingZeros(k);int p = pa[y][i];for (int j = 0; j < 26; ++j) {cw[j] += cnt[y][i][j];}y = p;}// y和x位于同一深度的时候可能位于同一个节点,那么就不用继续计算了if (y != x) {// 让 x 和 y 同时往上跳for (int i = m - 1; i >= 0; i--) { // 从大到小尝试各种2^i跳法int px = pa[x][i], py = pa[y][i];// 如果px!=py,说明可以跳if (px != py) {for (int j = 0; j < 26; ++j) {cw[j] += cnt[x][i][j] + cnt[y][i][j];} x = px;y = py;}}// 因为跳到最后,x和y都是最近公共祖先的直系节点,所以px一定会=py// 手动计算cnt[j]for (int j = 0; j < 26; ++j) {cw[j] += cnt[x][0][j] + cnt[y][0][j];}x = pa[x][0]; // x此时变成了 x 和 y 的最近公共祖先}int lca = x;pathLen -= depth[lca] * 2;int maxCw = 0;for (int i = 0; i < 26; ++i) maxCw = Math.max(maxCw, cw[i]);ans[qi] = pathLen - maxCw;}return ans;}public void dfs(int x, int fa, List<int[]>[] g, int[][] pa, int[][][] cnt, int[] depth) {pa[x][0] = fa; // 父节点for (int[] e: g[x]) { // 枚举和x相连的每一条边int y = e[0], w = e[1];if (y != fa) {cnt[y][0][w] = 1;depth[y] = depth[x] + 1;dfs(y, x, g, pa, cnt, depth);}}}
}
相关题目
1483. 树节点的第 K 个祖先
2836. 在传球游戏中最大化函数值
成绩记录

喜报!应该要升 guardian 了!

相关文章:
【力扣周赛】第 361 场周赛(⭐前缀和+哈希表 树上倍增、LCA⭐)
文章目录 竞赛链接Q1:7020. 统计对称整数的数目竞赛时代码——枚举预处理 Q2:8040. 生成特殊数字的最少操作(倒序遍历、贪心)竞赛时代码——检查0、00、25、50、75 Q3:2845. 统计趣味子数组的数目竞赛时代码——前缀和…...
解决 Android 依赖冲突
解决办法 问题原因就是,各个模块所有的依赖(递归)的 jar 包最后都会加载到安卓的项目中,你可以选择 project 形式查看 External Libraries,都在这了。所以解决问题关键就是干掉冲突,剩下一个就行了…...
前端设计模式基础笔记
前端设计模式是指在前端开发中经常使用的一些解决问题的模式或思想。它们是经过实践证明的最佳实践,可以帮助我们更好地组织和管理我们的代码。 一、单例模式(Singleton Pattern) 单例模式是一种创建型模式,它保证一个类只有一个…...
Python项目开发:Flask基于Python的天气数据可视化平台
目录 步骤一:数据获取 步骤二:设置Flask应用程序 步骤三:处理用户输入和数据可视化 步骤四:渲染HTML模板 总结 在这个数字化时代,数据可视化已经成为我们理解和解释信息的重要手段。在这个项目中,我们…...
Dell 服务器常见报错信息汇总
Dell 服务器常见报错汇总 如果有别的报错信息欢迎补充...
算法通关村-----贪心面试大热门之区间问题
判断区间是否重叠 问题描述 给定一个会议时间安排数组intervals,每个会议时间都包括开始时间和结束时间,intervals[i] [starti,endi],请你判断一个人是否能够参加这里面的全部会议。详见leetcode252 问题分析 先将会议安排数组按照开始时间排序&…...
OAK相机:自动或手动设置相机参数
OAK相机:自动或手动设置相机参数 硬件软件 硬件 使用硬件如下: 4✖️ov9782相机OAK-FFC-4P驱动板 硬件接线参考博主的一篇博客:OAK相机:多相机硬件同步拍摄 软件 博主使用的是Ubuntu18.04系统,首先配置所需的pytho…...
百家宴焕新上市,持续深耕100-300元价位段
执笔 | 尼 奥 编辑 | 古利特 4月8日,长江酒道曾在《百家宴谋划“晋级”之路,多措并举切分宴席市场“蛋糕”》一文中提到:“百家宴主力新品即将登场,市场政策灵活焕新。” 如今,百家宴新品及市场新政,正…...
Linux Debian12使用git将本地项目上传到码云(gitee)远程仓库
一、注册码云gitee账号 这个可以参考其他教程,本文不做介绍。 gitee官网:https://gitee.com/ 二、Linux Debian12安装git 如果Linux系统没有安装git,可以使用下面命令安装git sudo apt install git 三、gitee新建仓库 我这只做测试&…...
电子烟行业常用的英文表达
1. 电子烟的各种表达 a) 电子烟 i. Electronic-cigarette, ii. Electronic smoke, iii. electronic cigarettes iv. Electric cigarette, v. E-Cigarettes vi. e-cigarette, vii. e-Cig viii. E cigar,e-cigar 电子烟雪茄 2. 电子烟特指词汇及衍生 a) VAPE i. Vapo…...
【SpringMvc 丨跨域】
Spring MVC 支持跨域处理(CORS)。 CORS 简介处理CORS 过滤器CrossOrigin注解java配置xml配置 主页传送门:📀 传送 简介 跨域是指在浏览器的同源策略下,不能执行其他网站的脚本。它是由浏览器的安全限制造成的…...
【C语言】【strlen函数的使用与模拟实现】
1.strlen函数的使用和模拟实现 1.1使用: size_t strlen(const char* str)返回类型为无符号整型,参数是字符指针 计算的是字符串中到“\0"之前的字符个数 1.2模拟实现: 方法一:计数器式遍历 #include<stdio.h> #in…...
类和对象【基础概念】
全文目录 类的定义定义方式 类的访问限定符封装(面向对象的三大特性之一) 类对象模型类对象的存储方式类对象的大小计算 this指针this指针的特性**this指针可以为空吗?** 类的定义 在C中,C语言中的结构体struct中除了定义变量外还…...
如何测试生成式人工智能(AIGC)
简介:在人工智能日趋普及的今天,生成式人工智能(AIGC)已经成为不可忽视的一个分支。从自动化生成新闻、编写代码到图像和音频生成,AIGC几乎无处不在。但如何确保这些生成的内容达到预期标准、安全可靠,同时…...
机器学习算法详解3:逻辑回归
机器学习算法详解3:逻辑回归 前言 本系列主要对机器学习上算法的原理进行解读,给大家分享一下我的观点和总结。 本篇前言 本篇对逻辑回归的算法原理进行解读。 目录结构 文章目录 机器学习算法详解3:逻辑回归1. 引子2. sigmoid函数3. 原…...
linux命令集合
cd:切换文件路径 pwd:显示当前所处的路径 mkdir:创建目录比如mkdir test touch:创建一个空文件touch test.txt in:用于指定文件夹在另一个位置建立同步的链接in -s /lib/test1 /user/lj 在user目录下建立指向/lib/test1 目录的lj文件 cat:cat file(查看文件内…...
实现卓越供应链:RFID技术的革命性应用
在现代制造业中,供应链和物流的高效运作至关重要,它不仅影响着生产效率,还直接关系到企业的竞争力和客户满意度。为了应对这些挑战,越来越多的企业开始关注智能制造RFID智能设备,将其应用于供应链和物流管理࿰…...
从JVM角度看继承
从JVM角度看继承 最近重读了周志明老师的《深入理解JAVA虚拟机》一书,看完大有收获,但仍对继承情况下对象内存布局有所疑惑,所以查阅资料,结合本书进行分析 参考文档: 【深入理解JVM】:Java类继承关系中…...
基于Python和mysql开发的看图猜成语微信小程序(源码+数据库+程序配置说明书+程序使用说明书)
一、项目简介 本项目是一套基于Python和mysql开发的看图猜成语微信小程序,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。 包含:项目源码、项目文档、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都…...
Unity入门教程||创建项目(上)
一、介绍 目的:通过尝试制作一款使用玩家角色把小球弹飞的简单小游戏,熟悉使用Unity进行游戏开发的基本流程。 软件环境:Unity 2017.3.0f3,Visual Studio 2013 二、创建新项目 1,启动Unity后将出现一个并列显示Pro…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
