当前位置: 首页 > news >正文

(matplotlib)如何让各个子图ax大小(宽度和高度)相等

文章目录

      • 不相等
      • 相等

import matplotlib.pyplot as plt
import numpy as np
plt.rc('font',family='Times New Roman')
import matplotlib.gridspec as gridspec

不相等

我用如下subplots代码画一行四个子图,

fig,(ax1,ax2,ax3,ax4)=plt.subplots(1,4,figsize=(20,10),dpi=300)

然后往各个子图中填充东西,可以最终得到四个大小不一样的子图,气死了。
在这里插入图片描述
下面是源代码,虽然有点长,但是后面3个子图其实都是复制黏贴画第一个子图的代码而已。

fig,(ax1,ax2,ax3,ax4)=plt.subplots(1,4,figsize=(20,10),dpi=300)
plt.tick_params(labelsize=13)
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size'  : 18,
}
mat1=[[6.6653e-04, 1.1918e-04, 2.7586e-05, 6.7634e-06],[4.1138e-07, 1.3437e-04, 8.7720e-03, 9.9109e-01]]
mat2=[[0.0525, 0.0872, 0.0680, 0.1104, 0.0913],[0.1241, 0.0598, 0.1842, 0.0944, 0.2625]]
mat3=[[0.1099, 0.0782, 0.0827, 0.1141, 0.1160, 0.1113],[0.0670, 0.0602, 0.0869, 0.0607, 0.0646, 0.1443],[0.0828, 0.2043, 0.2473, 0.0332, 0.0344, 0.1214]]
mat4=[[0.1497, 0.0930, 0.0391, 0.1680, 0.0686, 0.0033, 0.1716, 0.1482,0.1557],[0.0867, 0.0803, 0.0777, 0.1071, 0.0728, 0.0809, 0.0816, 0.1320,0.1258],[0.0753, 0.0865, 0.0495, 0.1047, 0.0498, 0.1516, 0.0992, 0.1403,0.0341],[0.0978, 0.0529, 0.0065, 0.2158, 0.0117, 0.0104, 0.1325, 0.3183,0.1506],[0.0896, 0.0927, 0.0704, 0.0822, 0.0709, 0.1574, 0.0882, 0.0766,0.0555]]
m1=2
m2=2
m3=3
m4=5mat1=np.array(mat1).T
mat1=mat1/(mat1.sum(-1).reshape(-1,1))
ax1c=ax1.matshow(mat1)
# plt.colorbar(ax1c,fraction=0.07)
ax1.set_yticks([0,1,2,3])
ax1.set_yticklabels([0,0,1,1])
ax1.set_xticks(list(range(m1)))
ax1.set_xticklabels(list(range(m1)))
ax1.set_ylabel("historical event sequence",font2)
ax1.set_xlabel("event types",font2)mat2=np.array(mat2).T
mat2=mat2/(mat2.sum(-1).reshape(-1,1))
ax2c=ax2.matshow(mat2)
# plt.colorbar(ax2c,fraction=0.07)
ax2.set_yticks([0,1,2,3,4])
ax2.set_yticklabels([1, 0, 1, 0, 1])
ax2.set_xticks(list(range(m2)))
ax2.set_xticklabels(list(range(m2)))
# ax2.set_ylabel("history events",font2)
ax2.set_xlabel("event types",font2)mat3=np.array(mat3).T
mat3=mat3/(mat3.sum(-1).reshape(-1,1))
ax3c=ax3.matshow(mat3)
# plt.colorbar(ax3c,fraction=0.07)
ax3.set_yticks([0,1,2,3,4,5])
ax3.set_yticklabels([1, 0, 0, 2, 2, 1])
ax3.set_xticks(list(range(m3)))
ax3.set_xticklabels(list(range(m3)))
# ax3.set_ylabel("history events",font2)
ax3.set_xlabel("event types",font2)mat4=np.array(mat4).T
mat4=mat4/(mat4.sum(-1).reshape(-1,1))
ax4c=ax4.matshow(mat4)
ax4.set_yticks([0,1,2,3,4,5,6,7,8])
ax4.set_yticklabels([4, 1, 3, 4, 3, 2, 1, 4, 0])
ax4.set_xticks(list(range(m4)))
ax4.set_xticklabels(list(range(m4)))
# ax4.set_ylabel("history events",font2)
ax4.set_xlabel("event types",font2)plt.colorbar(ax4c,fraction=0.06)
plt.show()

相等

百思不得其解,最后找了好久终于在网上找到了解决办法,但是你要我说为什么上面代码会不相等,我也不知道。

上面中,我唯一知道的就是最后一个图由于有colorbar这个东西,好像确实会导致整个子图变形,会和其他3个子图不一样,但是我仍然不知道为什么前面三个子图不是一样宽高。而且我还试了,即使不要colorbar,四个子图大小还是不一样。

不管了,反正我已经找到了解决办法。核心就是使用gridspec,这个东西是一个好东西,建议大家学一学,可能可以顺带解决很多其他大小问题。

核心代码如下,使用gridspec来创建5个子图(最后一个子图留出来放置colorbar

fig=plt.figure(figsize=(20,8),dpi=300)
gs=gridspec.GridSpec(1, 5, width_ratios=[1,1,1,1,0.05])#指定各个子图的宽比例。
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax4 = plt.subplot(gs[3])
cax = plt.subplot(gs[4])

最终效果如下:
在这里插入图片描述
完整代码如下:

fig=plt.figure(figsize=(20,8),dpi=300)
gs=gridspec.GridSpec(1, 5, width_ratios=[1,1,1,1,0.05])
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax4 = plt.subplot(gs[3])
cax = plt.subplot(gs[4])
# fig,(ax1,ax2,ax3,ax4)=plt.subplots(1,4,figsize=(20,10),dpi=300)
plt.tick_params(labelsize=13)
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size'  : 18,
}
mat1=[[6.6653e-04, 1.1918e-04, 2.7586e-05, 6.7634e-06],[4.1138e-07, 1.3437e-04, 8.7720e-03, 9.9109e-01]]
mat2=[[0.0525, 0.0872, 0.0680, 0.1104, 0.0913],[0.1241, 0.0598, 0.1842, 0.0944, 0.2625]]
mat3=[[0.1099, 0.0782, 0.0827, 0.1141, 0.1160, 0.1113],[0.0670, 0.0602, 0.0869, 0.0607, 0.0646, 0.1443],[0.0828, 0.2043, 0.2473, 0.0332, 0.0344, 0.1214]]
mat4=[[0.1497, 0.0930, 0.0391, 0.1680, 0.0686, 0.0033, 0.1716, 0.1482,0.1557],[0.0867, 0.0803, 0.0777, 0.1071, 0.0728, 0.0809, 0.0816, 0.1320,0.1258],[0.0753, 0.0865, 0.0495, 0.1047, 0.0498, 0.1516, 0.0992, 0.1403,0.0341],[0.0978, 0.0529, 0.0065, 0.2158, 0.0117, 0.0104, 0.1325, 0.3183,0.1506],[0.0896, 0.0927, 0.0704, 0.0822, 0.0709, 0.1574, 0.0882, 0.0766,0.0555]]
m1=2
m2=2
m3=3
m4=5mat1=np.array(mat1).T
mat1=mat1/(mat1.sum(-1).reshape(-1,1))
ax1c=ax1.matshow(mat1)
# plt.colorbar(ax1c,fraction=0.07)
ax1.set_yticks([0,1,2,3])
ax1.set_yticklabels([0,0,1,1])
ax1.set_xticks(list(range(m1)))
ax1.set_xticklabels(list(range(m1)))
ax1.set_ylabel("historical event sequence",font2)
# 在顶部坐标轴设置标签
ax1.xaxis.set_label_position('top')
# 设置顶部坐标轴的刻度线,如果没有下面的代码,默认刻度标签在底部
ax1.xaxis.tick_top()
# 设置顶部坐标轴的标记
ax1.set_xlabel('event types',font2)mat2=np.array(mat2).T
mat2=mat2/(mat2.sum(-1).reshape(-1,1))
ax2c=ax2.matshow(mat2)
# plt.colorbar(ax2c,fraction=0.07)
ax2.set_yticks([0,1,2,3,4])
ax2.set_yticklabels([1, 0, 1, 0, 1])
ax2.set_xticks(list(range(m2)))
ax2.set_xticklabels(list(range(m2)))
# ax2.set_ylabel("history events",font2)
# 在顶部坐标轴设置标签
ax2.xaxis.set_label_position('top')
# 设置顶部坐标轴的刻度线,如果没有下面的代码,默认刻度标签在底部
ax2.xaxis.tick_top()
# 设置顶部坐标轴的标记
ax2.set_xlabel('event types',font2)mat3=np.array(mat3).T
mat3=mat3/(mat3.sum(-1).reshape(-1,1))
ax3c=ax3.matshow(mat3)
# plt.colorbar(ax3c,fraction=0.07)
ax3.set_yticks([0,1,2,3,4,5])
ax3.set_yticklabels([1, 0, 0, 2, 2, 1])
ax3.set_xticks(list(range(m3)))
ax3.set_xticklabels(list(range(m3)))
# ax3.set_ylabel("history events",font2)
# 在顶部坐标轴设置标签
ax3.xaxis.set_label_position('top')
# 设置顶部坐标轴的刻度线,如果没有下面的代码,默认刻度标签在底部
ax3.xaxis.tick_top()
# 设置顶部坐标轴的标记
ax3.set_xlabel('event types',font2)mat4=np.array(mat4).T
mat4=mat4/(mat4.sum(-1).reshape(-1,1))
ax4c=ax4.matshow(mat4)
ax4.set_yticks([0,1,2,3,4,5,6,7,8])
ax4.set_yticklabels([4, 1, 3, 4, 3, 2, 1, 4, 0])
ax4.set_xticks(list(range(m4)))
ax4.set_xticklabels(list(range(m4)))
# ax4.set_ylabel("history events",font2)
# 在顶部坐标轴设置标签
ax4.xaxis.set_label_position('top')
# 设置顶部坐标轴的刻度线,如果没有下面的代码,默认刻度标签在底部
ax4.xaxis.tick_top()
# 设置顶部坐标轴的标记
ax4.set_xlabel('event types',font2)plt.colorbar(ax4c,fraction=0.06,cax=cax)plt.text(-32.1,-0.011,"(a)",size=22)
plt.text(-23.25,-0.01,"(b)",size=22)
plt.text(-14.20,-0.01,"(c)",size=22)
plt.text(-5.45,-0.01,"(d)",size=22)plt.show()

完结撒花

相关文章:

(matplotlib)如何让各个子图ax大小(宽度和高度)相等

文章目录 不相等相等 import matplotlib.pyplot as plt import numpy as np plt.rc(font,familyTimes New Roman) import matplotlib.gridspec as gridspec不相等 我用如下subplots代码画一行四个子图, fig,(ax1,ax2,ax3,ax4)plt.subplots(1,4,figsize(20,10),dpi…...

python http 上传文件

文章目录 改进质量 import random import requests from requests_toolbelt.multipart.encoder import MultipartEncoderurl http://ip:port/email data MultipartEncoder(fields{receiverId: xxxx163.com,mailSubject: mailSubject,content: content,fileList: (file_name, …...

IPO解读:Instacart曲折上市,业务模式如何持续“绚烂”?

商业世界的模式创新就像夜空中的烟火,而上升期的烟火总是绚烂的。 近日,美国商品配送业的鼻祖Instacart重新启动了IPO,并于9月11日,更新了招股书,将发行价定为每股26-28美元,计划融资6.16亿美元。值得一提…...

使用sql profile 稳定执行计划的案例

文章目录 1.缘起2.变慢的sql3.检查瓶颈4.解决办法4.1 SQLTXPLAIN 也称为 SQLT4.11 下载coe_xfr_sql_profile.sql4.12 使用方法4.13 执行coe_xfr_sql_profile.sql4.14 执行coe_xfr_sql_profile.sql产生的sql profile文件4.15 验证 4.2 SQL Tuning Advisor方式4.21 第一次Tuning …...

海南大学金秋悦读《乡村振兴战略下传统村落文化旅游设计》2023新学年许少辉八一新书​

海南大学金秋悦读《乡村振兴战略下传统村落文化旅游设计》2023新学年许少辉八一新书​...

[N0wayback 2023春节红包题] happyGame python反编译

这个反编译的比较深 一,从附件的图标看是python打包的exe文件,先用pyinstxtractor.py 解包 生成的文件在main.exe_extracted目录下,在这里边找到main 二,把main改名为pyc然后加上头 这个头从包里找一个带头的pyc文件&#xff…...

Redis 初识与入门

1. 什么是Redis Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、…...

【STM32】片上ADC的初步使用

基于stm32f103系列 基于《零死角玩转 STM32F103—指南者》 ADC简介 stm32f103上的ADC 数量:3 精度:12bit(4096) 通道:ADC1,ADC2均有16个通道,ADC3有8个 功能:   转换结束、注入转换结束和发生模拟看门狗事件时产生中断。   …...

esxi下实现ikuai相同的两个网卡,单独路由配置

1.首先安装配置双网卡。 因为esxi主机只接入了一根外网的网线,那么我们这两个网卡都是一样的网卡,具体的到系统里面进行设置。 2.开机安装系统 进入配置界面,此处就不用多说了,可以看我之前的文档,或者网上其他人的安…...

Windows环境下Elasticsearch相关软件安装

Windows环境下Elasticsearch相关软件安装 本文将介绍在 windows 环境下安装 Elasticsearch 相关的软件。 1、安装Elasticsearch 1.1 安装jdk ElasticSearch是基于lucence开发的,也就是运行需要java jdk支持,所以要先安装JAVA环境。 由于ElasticSear…...

配置Jedis连接池

一、概述 Jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,因此推荐使用Jedis连接池代替Jedis的直连方式。 二、创建连接池 public class JedisConnectionFactory {private static final JedisPool jedisPool;static {//配置连接池Jedi…...

Windows 12 开源网页版

前言 Windows 12 网页版是一个开源项目,使用标准网络技术,例如 Html、CSS 和 Javascript, 希望让用户在网络上预先体验 Windows 12 Windows 12 网页版download Windows 12 网页版 gitlab项目Windows 12 网页版 downloadWindows 12 demo参考downloaddemo test 开始菜单 ​ …...

circleMidpoint(scrPt c, GLint r) 未定义的标识符,openGL第四章例子 ,画饼状图。

以下是完整的例子。在第四版 《计算机图形学 with openGL》第四章的例子中,竟然只调用了circleMidpoint(scrPt &c, GLint r) ,没有实现,我认为是系统方法,怎么找都找不到。openGL 官方文档也没找到,这不会是自定义…...

RKNN模型评估-性能评估和内存评估

基于Python的模型评估 perf_debug:进行性能评估时是否开启debug 模式。在 debug 模式下,可以获取到每一层的运行时间,否则只能获取模型运行的总时间。默认值为 False。 eval_mem: 是否进入内存评估模式。进入内存评估模式后,可以…...

window mysql-8.0.34 zip解压包安装

window系统上安装mysql8 解压版 下载压缩包 https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.34-winx64.zip安装 用解压软件解压刚下载的mysql-8.0.34-winx64.zip 的文件至d:\devs路径下。 创建配置文件my.ini到路径d:\devs\mysql-8.0.34-winx64下 [mysqld] # 设置…...

Mysql判断某个数据库中是否包含某个表,与pymysql工具函数

查看某个数据库中的全部表: SELECT table_name FROM information_schema.tables WHERE table_schema 数据库名因此查看某个库中的某个表可以使用: SELECT table_name FROM information_schema.tables WHERE table_schema 数据库名 AND table_name 表…...

快速掌握正则表达式

文章目录 限定符 Qualifier第一个常用限定符 ?第二个常用限定符 *第三个常用限定符 或运算符字符类元字符 Meta-characters\d 数字字符\w 单词字符空白符 \s.任意字符^ $ 行首行尾 贪婪与懒惰匹配 Greedy vs Lazy Match实例 1 :RGB颜色匹配实例 2 &…...

git: ‘lfs‘ is not a git command unclear

首先可以尝试 git lfs install 是否可以,不可以后就看这个连接:https://stackoverflow.com/questions/48734119/git-lfs-is-not-a-git-command-unclear。 我的是ubuntu,所以: 保证这个前提: git-lfs requires git ve…...

代码随想录--哈希--两个数组的交集

题意:给定两个数组,编写一个函数来计算它们的交集。 说明: 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。 import java.util.ArrayList; import java.util.HashMap; import java.util.List;public class SSS {public …...

基于腾讯文档进行应届生个人求职记录

1. 新建一个腾讯文档 电脑登录QQ,点击“腾讯文档”功能键。 2. 可以选择下载客户端,也可以直接进入网页版。(本人使用网页版) 3. 点击新建,选择在线表格。 4. 编辑表名,表内容。 5. 设置文档权限&#xf…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

12.找到字符串中所有字母异位词

🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...