当前位置: 首页 > news >正文

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3
在这里插入图片描述

在这里插入图片描述

基本介绍

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2022及以上。

程序设计

  • 完整源码和数据获取方式:私信回复PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)效果一览…...

python自学

自学第一步 第一个简单的基础,向世界说你好 启动python 开始 print是打印输出的意思,就是输出引号内的内容。 标点符号必须要是英文的,因为他只认识英文的标点符号。 exit()推出python。 我们创建一个文本文档&…...

元宇宙安全与著作权相关市场与技术动态:韩国视角

元宇宙市场动态 元宇宙安全与著作权维护技术现状 元宇宙有可能为商业创造巨大价值,尤其是在零售和时尚领域。时尚产品的象征性价值不仅在物理空间中得以保持,在虚拟空间中也是如此。通过元宇宙平台,企业可以开发虚拟产品,降低供…...

springboot整合neo4j--采用Neo4jClient和Neo4jTemplate方式

1.背景 看了spring-boot-starter-data-neo4j的源码之后发现,该starter内已经实现了Neo4jClient和Neo4jTemplate,我们只需要使用Autowire就能直接使用它操作neo4j。 Neo4jClient方式与我的另一篇springboot整合neo4j-使用原生cypher Java API博客方式一样…...

【算法与数据结构】701、LeetCode二叉搜索树中的插入操作

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:这道题关键在于分析插入值的位置,不论插入的值是什么(插入值和原有树中的键值都…...

前端--HTML

文章目录 HTML结构快速生成代码框架HTML常见标签 表格标签 编写简历信息 填写简历信息 Emmet 快捷键 HTML 特殊字符 一、HTML结构 1.认识HTML标签 HTML 代码是由 "标签" 构成的. 形如: <body>hello</body> 标签名 (body) 放到 < > 中 大部分标…...

安装配置 zookeeper(单机版)

目录 一 准备并解压安装包 二 修改zoo.cfg文件 三 创建相应两个目录 四 创建文件myid 五 修改环境变量 六 启动 zookeeper 一 准备并解压安装包 这里提供了网盘资源 http://链接: https://pan.baidu.com/s/1BybwSQ_tQUL23OI6AWxwFw?pwdd4cf 提取码: d4cf 这里的安装包是…...

2023/9/7 -- C++/QT

作业 1> 思维导图 2> 封装一个结构体&#xff0c;结构体中包含一个私有数组&#xff0c;用来存放学生的成绩&#xff0c;包含一个私有变量&#xff0c;用来记录学生个数&#xff0c; 提供一个公有成员函数&#xff0c;void setNum(int num)用于设置学生个数 提供一个…...

2023年09月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年09月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

MyBatis基础之概念简介

文章目录 基本概念1. 关于 MyBatis2. MyBatis 的体系结构3. 使用 XML 构建 SqlSessionFactory4. SqlSession5. 默认的别名6. 补充 [注意] 放前面前 很多人可能在使用 MyBatis-plus 进行代码开发&#xff0c;MyBatis的这部分内容是用来更好的讲述之后的内容。 基本概念 1. 关于…...

解决 SQLyog 连接 MySQL8.0+ 报错:错误号码2058

文章目录 一、问题现象二、原因分析三、解决方案1. 方案1&#xff1a;更新SQLyog版本2. 方案2&#xff1a;修改用户的授权插件3. 方案3&#xff1a;修复my.cnf 或 my.ini配置文件 四、最后总结 本文将总结如何解决 SQLyog 连接 MySQL8.0 时报错&#xff1a;错误号码2058 一、问…...

Linux内核4.14版本——drm框架分析(11)——DRM_IOCTL_MODE_ADDFB2(drm_mode_addfb2)

目录 1. drm_mode_addfb2 2. drm_internal_framebuffer_create 3. drm_fb_cma_create->drm_gem_fb_create->drm_gem_fb_create_with_funcs 4. drm_gem_fb_alloc 4.1 drm_helper_mode_fill_fb_struct 4.2 drm_framebuffer_init 5. 调用流程图 书接上回&#xff0c;使…...

mysql的date_format()函数格式月份的坑

问题背景 我表中有个字段存的是“年-月”格式的字符串&#xff0c;格式是这样的&#xff1a;‘2023-08’ 在查询这个表数据时&#xff0c;我使用了如下sql语句&#xff1a; select * from car where date_format(car_start_month,%Y-%m)<2023-08 意思是查询 car_start_mo…...

保姆级式教程:教你制作电子画册

在这个数字化时代&#xff0c;电子画册成为了展示和分享作品的一种流行方式。制作一个精美的电子画册不仅可以展示你的创意和才华&#xff0c;还可以吸引更多人的关注和欣赏。下面告诉大家一些小步骤&#xff0c;带你一步步学习如何制作电子画册。 1.收集和整理作品 接下来&am…...

探究Nginx应用场景

1 静态资源 Nginx是一个流行的Web服务器和反向代理服务器&#xff0c;它可以用于托管静态资源。下面是一个简单的案例&#xff0c;展示了如何使用Nginx来提供静态资源。 假设你有一个名为example.com的域名&#xff0c;并且你希望使用Nginx来托管位于/var/www/html目录下的静…...

sklearn中的数据集使用

导库 from sklearn.datasets import load_iris 实现 # 加载数据集 iris load_iris() print(f查看数据集&#xff1a;{iris}) print(f查看数据集的特征&#xff1a;{iris.feature_names}) print(f查看数据集的标签&#xff1a;{iris.target_names}) print(f查看数据集的描述…...

LLM在电商推荐系统的探索与实践

本文对LLM推荐的结合范式进行了梳理和讨论&#xff0c;并尝试将LLM涌现的能力迁移应用在推荐系统之中&#xff0c;利用LLM的通用知识来辅助推荐&#xff0c;改善推荐效果和用户体验。 背景 电商推荐系统&#xff08;Recommend System&#xff0c;RecSys&#xff09;是一种基于用…...

Linux 文本操作指令

Linux操作系统提供了许多用于处理文本文件的命令和工具。以下是一些常用的Linux文本命令&#xff1a; cat&#xff1a; 用于查看文本文件的内容&#xff0c;也可以用于合并多个文件。 cat 文件名more和less&#xff1a; 用于逐页查看文本文件&#xff0c;特别是对于大型文件。 …...

GIS地图服务数据可视化

GIS地图服务数据可视化 OSM&#xff08;Open Street Map&#xff0c;开放街道地图&#xff09;Bing地图&#xff08;必应地图&#xff09;Google地图&#xff08;谷歌地图&#xff09; 地图服务数据可视化是根据调用的地图服务请求Web服务器端的地图数据&#xff0c;实现地图数…...

java 获取实体类的反射 Field用法(获取对象的字段名和属性值) 包含注解值 - 如何用枚举类映射获取数据库字段名

实体类映射数据库字段的设计思路 初始思路: 使用 java 的反射 Field 通过注解方法获取实体类属性的注解值,但是如果遇到不是标准的数据库映射的注解方法,那么就无法拿到对应的数据库映射字段名,所以这一点被笔者舍弃了。 什么是标准的映射注解方法,即导入方法后带 anno…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

C#中用于控制自定义特性(Attribute)

我们来详细解释一下 [AttributeUsage(AttributeTargets.Class, AllowMultiple false, Inherited false)] 这个 C# 属性。 在 C# 中&#xff0c;Attribute&#xff08;特性&#xff09;是一种用于向程序元素&#xff08;如类、方法、属性等&#xff09;添加元数据的机制。Attr…...