百度飞浆OCR识别表格入门python实践
1. 百度飞桨(PaddlePaddle)
百度飞桨(PaddlePaddle)是百度推出的一款深度学习平台,旨在为开发者提供强大的深度学习框架和工具。飞桨提供了包括OCR(光学字符识别)在内的多种功能,可以帮助开发者在各种应用中实现高效的文本识别。官网链接:https://www.paddlepaddle.org.cn/。

初次使用,安装:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple paddlepaddle
验证安装,使用 python 进入 python 解释器,输入 import paddle ,再输入 paddle.utils.run_check()。
python
Python 3.8.10 (tags/v3.8.10:3d8993a, May 3 2021, 11:48:03) [MSC v.1928 64 bit (AMD64)] on win32
Type “help”, “copyright”, “credits” or “license” for more information.import paddle
paddle.utils.run_check()
Running verify PaddlePaddle program …
I0904 17:11:21.570567 15712 interpretercore.cc:237] New Executor is Running.
I0904 17:11:21.702833 15712 interpreter_util.cc:518] Standalone Executor is Used.
PaddlePaddle works well on 1 CPU.
PaddlePaddle is installed successfully! Let’s start deep learning with PaddlePaddle now.
2. 飞桨OCR
飞桨文字识别开发套件PaddleOCR,旨在打造一套丰富、领先且实用的OCR工具库,开源了基于PP-OCR实用的超轻量中英文OCR模型、通用中英文OCR模型,以及德法日韩等多语言OCR模型。并提供上述模型训练方法和多种预测部署方式。同时开源文本风格数据合成工具Style-Text和半自动文本图像标注工具PPOCRLable。
飞桨OCR文字简明识别过程如下图所示。

2.1. 安装飞桨OCR
如果你有企业中明确的 OCR 垂类应用需求,我们推荐你使用训压推一站式全流程高效率开发平台 PaddleX,助力 AI 技术快速落地。
首先,下载shapely安装包(地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/),并安装。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple e:\software\python\Shapely-1.8.2-cp38-cp38-win_amd64.whlpip install -i https://pypi.tuna.tsinghua.edu.cn/simple paddleocr
通用OCR文字识别,首个样例。

from paddleocr import PaddleOCR, draw_ocr# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for idx in range(len(result)):res = result[idx]for line in res:print(line)# 显示结果
from PIL import Image
result = result[0]
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

我的python环境,供参考:
- 操作系统:windows 10 专业版 版本 22H2
- python 3.8.10
- 安装包内容如下详见附件
2.2. PP-Structure 快速开始
PP-Structure是一个基于PaddlePaddle的表格结构识别工具包,可以帮助开发者快速进行表格结构的识别和提取。
图表识别,输入图像如下图,带水印的网页表格:

官方示例代码:
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_restable_engine = PPStructure(show_log=True)save_folder = 'output'
img_path = 'img/12.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])for line in result:line.pop('img')print(line)from PIL import Imagefont_path = 'C:\Windows\Fonts\simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result2.jpg')

download https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar to
C:\Users\xiaoyw/.paddleocr/whl\table\ch_ppstructure_mobile_v2.0_SLANet_infer\ch_ppstructure_mobile_v2.0_SLANet_infer.tar
100%| 10.3M/10.3M [00:01<00:00, 6.69MiB/s]
download https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar to
C:\Users\xiaoyw/.paddleocr/whl\layout\picodet_lcnet_x1_0_fgd_layout_cdla_infer\picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar
100%|| 10.1M/10.1M [00:00<00:00, 10.2MiB/s]
参考:
VipSoft. 百度飞桨(PaddlePaddle) - PaddleHub OCR 文字识别简单使用. 博客园. 2023.05
汽车人. Pytorch 和 TensorFlow 和 PaddlePaddle 这三个框架有什么区别?. 知乎. 2022.08
https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/docs/quickstart.md
附件:
Package Version
------------------------- -----------
anyio 4.0.0
argon2-cffi 23.1.0
argon2-cffi-bindings 21.2.0
arrow 1.2.3
astor 0.8.1
asttokens 2.3.0
async-lru 2.0.4
attrdict 2.0.1
attrs 23.1.0
Babel 2.12.1
backcall 0.2.0
bce-python-sdk 0.8.90
beautifulsoup4 4.12.2
bleach 6.0.0
blinker 1.6.2
cachetools 5.3.1
certifi 2023.7.22
cffi 1.15.1
charset-normalizer 3.2.0
click 8.1.7
colorama 0.4.6
comm 0.1.4
contourpy 1.1.0
cssselect 1.2.0
cssutils 2.7.1
cycler 0.11.0
Cython 3.0.2
debugpy 1.6.7.post1
decorator 5.1.1
defusedxml 0.7.1
dnspython 2.4.2
et-xmlfile 1.1.0
exceptiongroup 1.1.3
executing 1.2.0
fastjsonschema 2.18.0
fire 0.5.0
flask 2.3.3
flask-babel 3.1.0
fonttools 4.42.1
fqdn 1.5.1
future 0.18.3
h11 0.14.0
httpcore 0.17.3
httpx 0.24.1
idna 3.4
imageio 2.31.3
imgaug 0.4.0
importlib-metadata 6.8.0
importlib-resources 6.0.1
ipykernel 6.25.1
ipython 8.12.2
ipython-genutils 0.2.0
ipywidgets 8.1.0
isoduration 20.11.0
itsdangerous 2.1.2
jedi 0.19.0
Jinja2 3.1.2
joblib 1.3.2
json5 0.9.14
jsonpointer 2.4
jsonschema 4.19.0
jsonschema-specifications 2023.7.1
kiwisolver 1.4.5
lazy-loader 0.3
lmdb 1.4.1
lxml 4.9.3
MarkupSafe 2.1.3
matplotlib 3.7.2
matplotlib-inline 0.1.6
mistune 3.0.1
nbclient 0.8.0
nbconvert 7.8.0
nbformat 5.9.2
nest-asyncio 1.5.7
networkx 3.1
notebook 7.0.3
notebook-shim 0.2.3
numpy 1.24.4
opencv-contrib-python 4.6.0.66
opencv-python 4.6.0.66
openpyxl 3.1.2
opt-einsum 3.3.0
overrides 7.4.0
packaging 23.1
paddle-bfloat 0.1.7
paddleocr 2.7.0.2
paddlepaddle 2.5.1
pandas 2.0.3
pandocfilters 1.5.0
parso 0.8.3
pdf2docx 0.5.6
pickleshare 0.7.5
Pillow 10.0.0
pip 21.1.1
pkgutil-resolve-name 1.3.10
platformdirs 3.10.0
premailer 3.10.0
prometheus-client 0.17.1
prompt-toolkit 3.0.39
protobuf 3.20.2
psutil 5.9.5
pure-eval 0.2.2
pyclipper 1.3.0.post4
pycparser 2.21
pycryptodome 3.18.0
Pygments 2.16.1
pymongo 4.5.0
PyMuPDF 1.20.2
pyparsing 3.0.9
python-dateutil 2.8.2
python-docx 0.8.11
python-json-logger 2.0.7
pytz 2023.3
PyWavelets 1.4.1
pywin32 306
pywinpty 2.0.11
PyYAML 6.0.1
pyzmq 25.1.1
qtconsole 5.4.4
QtPy 2.4.0
rapidfuzz 3.2.0
rarfile 4.0
referencing 0.30.2
requests 2.31.0
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
rpds-py 0.10.0
scikit-image 0.21.0
scikit-learn 1.3.0
scipy 1.10.1
Send2Trash 1.8.2
setuptools 56.0.0
Shapely 1.8.2
six 1.16.0
sniffio 1.3.0
soupsieve 2.5
stack-data 0.6.2
termcolor 2.3.0
terminado 0.17.1
threadpoolctl 3.2.0
tifffile 2023.7.10
tinycss2 1.2.1
tomli 2.0.1
tornado 6.3.3
tqdm 4.66.1
traitlets 5.9.0
typing-extensions 4.7.1
tzdata 2023.3
uri-template 1.3.0
urllib3 2.0.4
visualdl 2.5.3
wcwidth 0.2.6
webcolors 1.13
webencodings 0.5.1
websocket-client 1.6.2
werkzeug 2.3.7
widgetsnbextension 4.0.8
zipp 3.16.2
相关文章:
百度飞浆OCR识别表格入门python实践
1. 百度飞桨(PaddlePaddle) 百度飞桨(PaddlePaddle)是百度推出的一款深度学习平台,旨在为开发者提供强大的深度学习框架和工具。飞桨提供了包括OCR(光学字符识别)在内的多种功能,可…...
直接插入排序、希尔排序详解。及性能比较
直接插入排序、希尔排序详解。及性能比较 一、 直接插入排序1.1 插入排序原理1.2 代码实现1.3 直接插入排序特点总结 二、希尔排序 ( 缩小增量排序 )2.1 希尔排序原理2.2 代码实现2.3 希尔排序特点总结 三、直接插入排序和希尔排序性能大比拼 !!!3.1 如何对比性能?准…...
2023备战秋招Java面试八股文合集
Java就业大环境仍然根基稳定,市场上有很多机会,技术好的人前景就好,就看你有多大本事了。小编得到了一份很不错的资源,建议大家可以认真地来看看以下的资料,来提升一下自己的核心竞争力,在面试中轻松应对面…...
SLAM中的二进制词袋生成过程和工作原理
长期视觉SLAM (Simultaneous Localization and Mapping)最重要的要求之一是鲁棒的位置识别。经过一段探索期后,当长时间未观测到的区域重新观测时,标准匹配算法失效。 当它们被健壮地检测到时,回环检测提供正确的数据关联以获得一致的地图。…...
算法训练第五十九天
503. 下一个更大元素 II - 力扣(LeetCode) 代码: class Solution { public:vector<int> nextGreaterElements(vector<int>& nums) {vector<int> nums1(nums.begin(), nums.end());nums.insert(nums.end(), nums1.beg…...
二叉树oj题
目录 层序遍历(一) 题目 思路 代码 层序遍历(二) 题目 思路 代码 根据二叉树创建字符串 题目 思路 代码 二叉树的最近公共祖先 题目 思路 代码 暴力版 队列版 栈版 bs树和双向链表 题目 思路 代码 前序中序序列构建二叉树 题目 思路 代码 中序后序…...
华为数通方向HCIP-DataCom H12-831题库(单选题:1-20)
第1题 关于IPSG下列说法错误的是? A、IPSG可以防范IP地址欺骗攻击 B、IPSG是一种基于三层接口的源IP地址过滤技术 C、IPSG可以开启IP报文检查告警功能,联动网管进行告警 D、可以通过IPSG防止主机私自更改IP地址 答案: B 解析: IPSG(入侵防护系统)并不是基于三层接口的源I…...
TableConvert-免费在线表格转工具 让表格转换变得更容易
在线表格转工具TableConvert TableConvert 是一个基于web的免费且强大在线表格转换工具,它可以在 Excel、CSV、LaTeX 表格、HTML、JSON 数组、insert SQL、Markdown 表格 和 MediaWiki 表格等之间进行互相转换,也可以通过在线表格编辑器轻松的创建和生成…...
伦敦金实时行情中的震荡
不知道各位伦敦金投资者,曾经花过多长的时间来观察行情走势的表现,不知道大家是否有统计过,其实行情有60%-70%的时间,都会处于没有明显方向的震荡行情之中呢?面对长期的震荡行情,伦敦金投资者道理应该如何应…...
蓝桥杯打卡Day7
文章目录 阶乘的末尾0整除问题 一、阶乘的末尾0IO链接 本题思路:由于本题需要求阶乘的末尾0,由于我们知道2*510可以得到一个0,那么我们就可以找出2的数和5的数,但是由于是阶乘,所以5的数量肯定是小于2的数量…...
Mobile Vision Transformer-based Visual Object Tracking
论文作者:Goutam Yelluru Gopal,Maria A. Amer 作者单位:Concordia University 论文链接:https://arxiv.org/pdf/2309.05829v1.pdf 项目链接:https://github.com/goutamyg/MVT 内容简介: 1)方向&#…...
HTTP反爬困境
尊敬的程序员朋友们,大家好!今天我要和您分享一篇关于解决反爬困境的文章。在网络爬虫的时代,许多网站采取了反爬措施来保护自己的数据资源。然而,作为程序员,我们有着聪明才智和技术能力,可以应对这些困境…...
从零开始探索C语言(九)----函数指针与回调函数
函数指针 函数指针是指向函数的指针变量。 通常我们说的指针变量是指向一个整型、字符型或数组等变量,而函数指针是指向函数。 函数指针可以像一般函数一样,用于调用函数、传递参数。 函数指针变量的声明: typedef int (*fun_ptr)(int,i…...
智慧工厂的基础是什么?功能有哪些?
关键词:智慧工厂、智慧工厂数字化、设备设施数字化、智能运维、工业互联网 1.智慧工厂的定义 智慧工厂是以数字化信息形式的工厂模型为基础,以实现制造系统离线分析设计和实际生产系统运行状态在线监控的新型工厂。智慧工厂的建设在于以高度集成的信息化…...
LeetCode 238. 除自身以外数组的乘积
题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 使用前缀和进行解决该题,只不过与之前前缀和不同的是这个题目计算前缀和的时候不需要计算当前元素,也就是当前位置前缀和的值其实是不包含当前元素的前缀和。…...
点击劫持概念及解决办法
1.点击劫持的概念 点击劫持 (Clickjacking) 技术又称为界面伪装攻击 (UI redress attack ),是一种视觉上的欺骗手段。攻击者使用一个或多个透明的 iframe 覆盖在一个正常的网页上,然后诱使用户在该网页上进行操作,当用户在不知情的情况下点击…...
【Spring】手动实现Spring底层机制-问题的引出
🎄欢迎来到边境矢梦的csdn博文🎄 🎄本文主要梳理手动实现Spring底层机制-问题的引出 🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下…...
Java - List 去重,获取唯一值,分组列出所属对应集合
问题:List 去重,获取唯一值,分组列出所属对应集合 方案一:这个不需要额外的内存占用 //遍历后判断赋给另一个list集合public static void main(String[] args){List<String> list new ArrayList<String>(); lis…...
离散高斯抽样(Discrete Gaussian Sampling)
离散高斯抽样 离散高斯抽样(Discrete Gaussian Sampling)是一种常见于密码学和数学领域的随机采样方法。它通常用于构建基于格(lattice)的密码学方案,如基于格的加密和数字签名。Discrete Gaussian Sampling 的主要目…...
Elasticsearch:什么是生成式人工智能?
生成式人工智能定义 给学生的解释(基本): 生成式人工智能是一种可以创造新的原创内容的技术,例如艺术、音乐、软件代码和写作。 当用户输入提示时,人工智能会根据从互联网上现有示例中学到的知识生成响应,…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
