机器学习实战-系列教程7:SVM分类实战2线性SVM(鸢尾花数据集/软间隔/线性SVM/非线性SVM/scikit-learn框架)项目实战、代码解读
🌈🌈🌈机器学习 实战系列 总目录
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
SVM分类实战1之简单SVM分类
SVM分类实战2线性SVM
SVM分类实战3非线性SVM
3、不同软间隔C值
3.1 数据标准化的影响

如图左边是没有使用标准化操作的分类结果,右边使用了标准化操作,很显然右边分类的精度更高,能够更好的将数据进行分类
3.2 软间隔

如左图所示,存在一个离群点,如果严格按照SVM一定要全部分类正确去做,不可能找到一个回归线将两类数据分开。右边的图,它的决策边界要求放松了一点,但是可以基本拟合数据的分类情况。这个就是软间隔需要做的事情,它可以控制当前的决策边界别那么严格了,错一点也没关系,使用超参数C控制软间隔程度。
import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
iris=datasets.load_iris()
X = iris["data"][:,(2,3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Viginica
svm_clf = Pipeline((('std',StandardScaler()),('linear_svc',LinearSVC(C=1))
))
svm_clf.fit(X,y)
svm_clf.predict([[5.5,1.7]])
- 导包
- 取出鸢尾花数据
- 取出两列作为输入数据
- 取出标签数据
svm_clf分类器- 标准化操作
- 线性支持向量机,C值指定为1
- 训练处一个基本模型
- 随便传进去两个值,预测出结果属于第二个类别
打印结果:
array([1.])
3.3 不同C值对比
scaler = StandardScaler()
svm_clf1 = LinearSVC(C=1,random_state = 42)
svm_clf2 = LinearSVC(C=100,random_state = 42)
scaled_svm_clf1 = Pipeline((('std',scaler),('linear_svc',svm_clf1)
))
scaled_svm_clf2 = Pipeline((('std',scaler),('linear_svc',svm_clf2)
))
scaled_svm_clf1.fit(X,y)
scaled_svm_clf2.fit(X,y)
这段代码展示了如何使用scikit-learn库中的Pipeline和StandardScaler来构建和训练两个不同的线性支持向量机分类器,其中一个使用较小的正则化参数C,另一个使用较大的正则化参数C。下面是对代码的解释:
-
scaler = StandardScaler(): 这行代码创建了一个名为scaler的标准化器对象。StandardScaler用于将数据标准化,即将特征缩放到均值为0,方差为1的标准正态分布。 -
svm_clf1 = LinearSVC(C=1, random_state=42): 这行代码创建了一个线性支持向量机分类器svm_clf1,并设置正则化参数C为1。random_state参数用于设置随机数生成器的种子,以确保结果的可重现性。 -
svm_clf2 = LinearSVC(C=100, random_state=42): 这行代码创建了另一个线性支持向量机分类器svm_clf2,并设置较大的正则化参数C为100,同时也设置了相同的随机种子。 -
scaled_svm_clf1和scaled_svm_clf2是使用Pipeline构建的两个分类器,它们包含了标准化和线性支持向量机两个步骤。具体来说,scaled_svm_clf1将数据首先标准化,然后应用svm_clf1进行分类,而scaled_svm_clf2将数据首先标准化,然后应用svm_clf2进行分类。 -
Pipeline对象由一个元组构成,元组中包含了一系列的步骤,每个步骤都由一个名称和一个估算器(estimator)组成。在这里,第一个步骤使用了标准化器std,第二个步骤使用了线性支持向量机分类器linear_svc。 -
scaled_svm_clf1.fit(X, y)和scaled_svm_clf2.fit(X, y)分别用于训练两个分类器,其中X是输入特征,y是目标标签。这将使模型学习如何根据输入数据对鸢尾花进行分类。
通过这种方式,可以比较两个不同正则化参数C的线性SVM分类器的性能,并选择适合你数据的模型。通常,较大的C值表示模型对分类错误的惩罚更大,可能会导致更复杂的模型,而较小的C值则表示模型对分类错误的惩罚较小,可能导致更简单的模型。选择适当的C值取决于具体的问题和数据。
3.4 展示训练结果
b1 = svm_clf1.decision_function([-scaler.mean_ / scaler.scale_])
b2 = svm_clf2.decision_function([-scaler.mean_ / scaler.scale_])
w1 = svm_clf1.coef_[0] / scaler.scale_
w2 = svm_clf2.coef_[0] / scaler.scale_
svm_clf1.intercept_ = np.array([b1])
svm_clf2.intercept_ = np.array([b2])
svm_clf1.coef_ = np.array([w1])
svm_clf2.coef_ = np.array([w2])
plt.figure(figsize=(14,4.2))
plt.subplot(121)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^", label="Iris-Virginica")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs", label="Iris-Versicolor")
plot_svc_decision_boundary(svm_clf1, 4, 6,sv=False)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper left", fontsize=14)
plt.title("$C = {}$".format(svm_clf1.C), fontsize=16)
plt.axis([4, 6, 0.8, 2.8])plt.subplot(122)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plot_svc_decision_boundary(svm_clf2, 4, 6,sv=False)
plt.xlabel("Petal length", fontsize=14)
plt.title("$C = {}$".format(svm_clf2.C), fontsize=16)
plt.axis([4, 6, 0.8, 2.8])
打印结果:
[0.86509158 2.24724474]
[1.74772456 3.14504837]
如左图,当C值设置的比较小的时候,得到的决策边界比较大,但是会出现一些错误,设置比较的大的时候就会比较严格,就容易出现过拟合的风险
- 在右侧,使用较高的C值,分类器会减少误分类,但最终会有较小间隔。
- 在左侧,使用较低的C值,间隔要大得多,但很多实例最终会出现在间隔之内。
SVM分类实战1之简单SVM分类
SVM分类实战2线性SVM
SVM分类实战3非线性SVM
相关文章:
机器学习实战-系列教程7:SVM分类实战2线性SVM(鸢尾花数据集/软间隔/线性SVM/非线性SVM/scikit-learn框架)项目实战、代码解读
🌈🌈🌈机器学习 实战系列 总目录 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 SVM分类实战1之简单SVM分类 SVM分类实战2线性SVM SVM分类实战3非线性SVM 3、不同软间隔C值 3.1 数据标准化的影响 如图左边是没…...
DOM渲染与优化 - CSS、JS、DOM解析和渲染阻塞问题
文章目录 DOM渲染面试题DOM的渲染过程DOM渲染的时机与渲染进程的概述浏览器的渲染流程1. 解析HTML生成DOM树:遇到<img>标签加载图片2. 解析CSS生成CSSOM(CSS Object Model): 遇见背景图片链接不加载3. 将DOM树和CSSOM树合并生成渲染树:加载可视节点…...
基于小程序的理发店预约系统
一、项目背景及简介 现在很多的地方都在使用计算机开发的各种管理系统来提高工作的效率,给人们带来很多的方便。计算机技术从很大的程度上解放了人们的双手,并扩大了人们的活动范围,是人们足不出户就可以通过电脑进行各种事情的管理。信息系…...
MD5 算法流程
先通过下面的命令对 md5算法有个感性的认识: $ md5sum /tmp/1.txt 1dc792fcaf345a07b10248a387cc2718 /tmp/1.txt$ md5sum // 从键盘输入,ctrl-d 结束输入 hello, world! 910c8bc73110b0cd1bc5d2bcae782511 -从上面可以看到,一个文件或一…...
TCP/IP协议详解
TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/互联网协议)是互联网的基本协议,也是国际互联网络的基础。 TCP/IP 不是指一个协议,也不是 TCP 和 IP 这两个协议的合称,而是一个协…...
SSM SpringBoot vue快递柜管理系统
SSM SpringBoot vue快递柜管理系统 系统功能 登录 注册 个人中心 快递员管理 用户信息管理 用户寄件管理 配送信息管理 寄存信息管理 开发环境和技术 开发语言:Java 使用框架: SSM(Spring SpringMVC Mybaits)或SpringBoot 前端: vue 数据库:Mys…...
期权交易保证金比例一般是多少?
期权交易是一种非常受欢迎的投资方式之一,它为期权市场带来了更为多样化和灵活化的交易形式。而其中的期权卖方保证金比例是期权交易中的一个重要指标,直接关系到投资者的风险与收益,下文介绍期权交易保证金比例一般是多少?本文来…...
029:vue项目,勾选后今天不再弹窗提示
第029个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…...
Unet语义分割-语义分割与实例分割概述-001
文章目录 前言1、图像分割和图像识别1.语义分割2.实例分割 2、分割任务中的目标函数定义3.IOU 前言 大纲目录 1、图像分割和图像识别 下面是图像识别和图像分割的区别,图像识别就是识别出来,画个框,右边的是图像分割。 1.语义分割 两张图把…...
Linux常用命令字典篇
Linux命令 1. 翻页查看文件 less [-N] 文件名:可以向后翻页,也可以向前翻页,-N表示显示行号 more 文件名:仅可以向后翻页 2. 端口占用信息查看 netstat -tunlp | grep 端口号:查看端口号对应的信息 lsof i: 端口号…...
__declspec(novtable) 在C++
__declspec(novtable) 在C中接口中广泛应用. 不容易看到它是因为在很多地方它都被定义成为了宏. 比如说ATL活动模板库中的ATL_NO_VTABLE, 其实就是__declspec(novtable). __declspec(novtable) 就是让类不要有虚函数表以及对虚函数表的初始化代码, 这样可以节省运行时间和空间.…...
ChatGPT充值,银行卡被拒绝
目录 前言步骤1. 魔法地址选择2. 选择手机号码(归属地)3. 勾选,服从协议4. 填写信息5. 完善账单地址6. 订阅成功 前言 大家好,今天我在订阅ChatGPT4时,遭遇了银行卡被拒绝的尴尬境地。这里有个技巧,我来给…...
算法通过村第七关-树(递归/二叉树遍历)白银笔记|递归实战
文章目录 前言1. 深入理解前中后序遍历从小到大递推分情况讨论,明确结束条件组合出完整的方法:从大到小 画图推演 总结 前言 提示:没有客观公正的记忆这回事,所有的记忆都是偏见,都是为自己的存活而重组过的经验。--国…...
抖音小程序开发教学系列(6)- 抖音小程序高级功能
第六章:抖音小程序高级功能 6.1 抖音小程序的支付功能6.1.1 接入流程6.1.2 注意事项 6.2 抖音小程序的地理位置和地图功能6.2.1 接入流程6.2.2 使用方法 6.3 抖音小程序的实时音视频功能6.3.1 接入流程6.3.2 使用方法 6.4 抖音小程序的小游戏开发6.4.1 基本流程6.4.…...
SpringBoot运行原理
目录 SpringBootApplication ComponentScan SpringBootConfiguration EnableAutoConfiguration 结论 SpringbootApplication(主入口) SpringBootApplication public class SpringbootConfigApplication {public static void main(String[] args) {…...
为什么Proteus串口无法正常显示
我以前就可以正常显示,但是最近一段时间,发现串口无法正常显示,试了很多办法都不行, 然后今天干好有点时间就刷了个机,然后居然就好了, 这就说明:Proteus不正常可能是病毒破坏了某个文件导致异…...
Furion api npm web vue混合开发
Furion api npm web vue混合开发 Furion-api项目获取swagger.json文件复制json制作ts包删除非.ts文件上传到npm获取npm包引用 Furion-api项目获取swagger.json文件 使用所有接口合并的配置文件 复制json制作ts包 https://editor.swagger.io 得到 typescript-axios-clien…...
【搭建私人图床】本地PHP搭建简单Imagewheel云图床,在外远程访问
文章目录 1.前言2. Imagewheel网站搭建2.1. Imagewheel下载和安装2.2. Imagewheel网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar临时数据隧道3.2.Cpolar稳定隧道(云端设置)3.3.Cpolar稳定隧道(本地设置) 4.公网访问测…...
BOM操作
文章目录 BOM事件页面加载调整窗口事件定时器停止计时器Location对象History对象Offsetleft获取元素偏移Offset与style的区别可视区client系列滚动scroll系列Mouseover和mousenter区别 动画原理实现动画封装给不同对象添加定时器缓动动画原理多个位置间移动 BOM事件 页面加载 …...
【校招VIP】前端操作系统之存储管理加密
考点介绍 加密算法有很多,如不可逆的摘要算法MD5、SHA(安全哈希算法),可逆的Base64编码,对称加密算法DES、AES,还有非对称加密算法DH、RSA等。那是不是说明我们可以使用任何一种加密算法就能保证网站的安全…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
