Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果
Pytorch中张量矩阵乘法函数使用说明
- 1 torch.mm() 函数
- 1.1 torch.mm() 函数定义及参数
- 1.2 torch.bmm() 官方示例
- 2 torch.bmm() 函数
- 2.1 torch.bmm() 函数定义及参数
- 2.2 torch.bmm() 官方示例
- 3 torch.matmul() 函数
- 3.1 torch.matmul() 函数定义及参数
- 3.2 torch.matmul() 规则约定
- 3.3 torch.matmul() 官方示例
- 3.4 高维数据实例解释
- 参考博文及感谢
1 torch.mm() 函数
全称为matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是2维;
1.1 torch.mm() 函数定义及参数
torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的矩阵
** mat2* (Tensor) – – 第二个要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
1.2 torch.bmm() 官方示例
mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)
torch.mm(mat1, mat2)tensor([[ 0.4851, 0.5037, -0.3633],[-0.0760, -3.6705, 2.4784]])
2 torch.bmm() 函数
全称为batch matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是3维;
2.1 torch.bmm() 函数定义及参数
torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一批要相乘的矩阵
** mat2* (Tensor) – – 第二批要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
2.2 torch.bmm() 官方示例
input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
res.size()torch.Size([10, 3, 5])
3 torch.matmul() 函数
可进行多维矩阵运算,根据不同输入维度进行广播机制然后运算,和点积类似,广播机制可参考之前博文torch.mul()函数。
3.1 torch.matmul() 函数定义及参数
torch.matmul(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的张量
** mat2* (Tensor) – – 第二个要相乘的张量
支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
3.2 torch.matmul() 规则约定
(1)若两个都是1D(向量)的,则返回两个向量的点积;
(2)若两个都是2D(矩阵)的,则按照(矩阵相乘)规则返回2D;
(3)若input维度1D,other维度2D,则先将1D的维度扩充到2D(1D的维数前面+1),然后得到结果后再将此维度去掉,得到的与input的维度相同。即使作扩充(广播)处理,input的维度也要和other维度做对应关系;
(4)若input是2D,other是1D,则返回两者的点积结果;
(5)如果一个维度至少是1D,另外一个大于2D,则返回的是一个批矩阵乘法( a batched matrix multiply)
- (a)若input是1D,other是大于2D的,则类似于规则(3);
- (b)若other是1D,input是大于2D的,则类似于规则(4);
- (c)若input和other都是3D的,则与torch.bmm()函数功能一样;
- (d)如果input中某一维度满足可以广播(扩充),那么也是可以进行相乘操作的。例如 input(j,1,n,m)* other (k,m,p) = output(j,k,n,p)
matmul() 根据输入矩阵自动决定如何相乘。低维根据高维需求,合理广播。
3.3 torch.matmul() 官方示例
# vector x vector
tensor1 = torch.randn(3)
tensor2 = torch.randn(3)
torch.matmul(tensor1, tensor2).size()torch.Size([])
# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([3])
# batched matrix x broadcasted vector
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3])
# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
3.4 高维数据实例解释
直接看一个4维的二值例子,先看图(红虚线和实线是为了便于区分维度而添加),不懂再结合代码和结果分析,先做广播,然后对应矩阵进行乘积运算。
代码如下:
import torch
import numpy as npnp.random.seed(2022)
a = np.random.randint(low=0, high=2, size=(2, 2, 3, 4))
a = torch.tensor(a)
b = np.random.randint(low=0, high=2, size=(2, 1, 4, 3))
b = torch.tensor(b)
c = torch.matmul(a, b)
# or
# c = a @ b
print(a)
print("=============================================")
print(b)
print("=============================================")
print(c.size())
print("=============================================")
print(c)
运行结果为:
tensor([[[[1, 0, 1, 0],[1, 1, 0, 1],[0, 0, 0, 0]],[[1, 1, 1, 1],[1, 1, 0, 0],[0, 1, 0, 1]]],[[[0, 0, 0, 1],[0, 0, 0, 1],[0, 1, 0, 0]],[[1, 1, 1, 1],[1, 1, 1, 1],[0, 0, 0, 0]]]], dtype=torch.int32)
=============================================
tensor([[[[0, 1, 0],[1, 1, 0],[0, 0, 0],[1, 1, 0]]],[[[0, 1, 0],[1, 1, 1],[1, 1, 1],[1, 0, 1]]]], dtype=torch.int32)
=============================================
torch.Size([2, 2, 3, 3])
=============================================
tensor([[[[0, 1, 0],[2, 3, 0],[0, 0, 0]],[[2, 3, 0],[1, 2, 0],[2, 2, 0]]],[[[1, 0, 1],[1, 0, 1],[1, 1, 1]],[[3, 3, 3],[3, 3, 3],[0, 0, 0]]]], dtype=torch.int32)
参考博文及感谢
部分内容参考以下链接,这里表示感谢 Thanks♪(・ω・)ノ
参考博文1 官方文档查询地址
https://pytorch.org/docs/stable/index.html
参考博文2 Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别
https://blog.csdn.net/irober/article/details/113686080
相关文章:

Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果
Pytorch中张量矩阵乘法函数使用说明 1 torch.mm() 函数1.1 torch.mm() 函数定义及参数1.2 torch.bmm() 官方示例 2 torch.bmm() 函数2.1 torch.bmm() 函数定义及参数2.2 torch.bmm() 官方示例 3 torch.matmul() 函数3.1 torch.matmul() 函数定义及参数3.2 torch.matmul() 规则约…...

如何在matlab绘图的标题中添加变量?变量的格式化字符串输出浅析
文章目录 matlab的格式化输出控制符字段宽度、精度和对齐方式的控制matlab的格式化输出总结 matlab的格式化输出控制符 Matlab在画图的时候,采用title函数可以增加标题,该函数的输入是一个字符串,有时候我们想在字符串中添加一些变量&#x…...
Spring MVC 八 - 内置过滤器
SpringMVC内置如下过滤器: Form DataForwarded HeadersShallow ETagCORS Form Data 浏览器可以通过HTTP GET或HTTP POST提交form data(表单数据),但是非浏览器客户端可以通过HTTP PUT、HTTP DELETE、HTTP PATCH提交表单数据。但…...
@Change监听事件与vue监听属性:watch的区别?
change 和 watch 是 Vue 中用于处理数据变化的两种不同方式。 1. change: - change 是一个事件监听器,用于监听特定DOM元素的变化事件,通常用于表单元素(如输入框、下拉框等)的值变化。 - 它在用户与表单元素交互并提交了变化时触…...

C++面试记录之中望软件
上次面试体验不好,记录了,这次同样记录一次体验不好的面试,中望软件…直接写了名字,因为真的很无语😓 记录一下我不知道的问题 忘记录音了😢 1. main函数之前做了什么? 我:实话我…...

多功能翻译工具:全球翻译、润色和摘要生成 | 开源日报 0914
openai-translator/openai-translator Stars: 18.1k License: AGPL-3.0 这个项目是一个多功能翻译工具,由 OpenAI 提供支持。 可以进行全球单词翻译、单词润色和摘要生成等操作提供三种模式:翻译、润色和摘要支持 55 种不同语言的互相转换支持流模式允…...
在 Vue.js 中,使用 watch 监听data变量如:对象属性/data变量
watch 监听对象属性 在 Vue.js 中,使用 watch 监听对象属性的变化时,应该将属性名作为字符串传递给 watch 选项。 示例如下: javascript watch: {addform.isCheck1: function(newValue) {console.log(newValue);var quantity this.addform…...

vue中预览xml并高亮显示
项目中有需要将接口返回的数据流显示出来,并高亮显示; 1.后端接口返回blob,类型为xml,如图 2.页面中使用pre code标签: <pre v-if"showXML"><code class"language-xml">{{xml}}</code></pre> …...

MFC中嵌入显示opencv窗口
在MFC窗体中建立一个Picture Control控件,用于显示opencv窗口 在属性中设置图片控件的资源ID为IDC_PIC1 主要的思路: 使用GetWindowRect可以获取图片控件的区域 使用cv::resizeWindow可以设置opencv窗口的大小,适合图片控件的大小 使用cvGetWindowHandle函数可以获取到ope…...

金鸣识别网页版:轻松实现表格识别的神器
来百度APP畅享高清图片 金鸣识别网页版是一款功能强大的在线识别工具,它可对图片或PDF中的表格文本内容进行识别,还支持各种证票的结构化识别。以下是以表格识别为例,对金鸣识别网页版的操作说明进行详细介绍: 首先,打…...
DasViewer可以设置打开指定文件吗?
答:会员可以。工具里面选择坐标转换,输入源数据,设置好源坐标和目标坐标以及路径。根据两张坐标系的性质选择转换方式。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑…...
uniapp微信小程序用户隐私保护指引弹窗组件
<template><view v-if"showPrivacy" :class"privacyClass"><view :class"contentClass"><view class"title">用户隐私保护指引</view><view class"des">感谢您选择使用我们的小程序&am…...
Java的反射应用(Method和Class)
记录:473 场景:使用java.lang.reflect.Method和java.lang.Class类,根据Java反射原理实现使用指定字符串类名和方法名称,调用对应对象和对应方法。 版本:JDK 1.8。 1.使用Java反射调用指定类的指定方法 (1)参数说明…...
Java之泛型系列--Class使用泛型的方法(有示例)
原文网址:Java之泛型系列--Class使用泛型的方法(有示例)_IT利刃出鞘的博客-CSDN博客 简介 本文用示例介绍Java在方法前加泛型的使用。 类类型的写法 对象所对应的类的泛型写法 Class classAClass<T> classAClass<?> classB Class与Class<?&g…...
【【无用的知识之串口学习】】
无用的知识之串口学习 USART串口协议 •通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统 •通信协议:制定通信的规则,通信双方按照协议规则进行数据收发 就是我们并不能在芯片上设计完全部的一下子完成所有的设计&am…...

9月13日上课内容 第三章 ELK日志分析系统
本章结构 ELK日志分析系统简介 ELK日志分析系统分为 Elasticsearch Logstash Kibana 日志处理步骤 1.将日志进行集中化管理 2.将日志格式化(Logstash) 并输出到Elasticsearch 3.对格式化后的数据进行索引和存储 (Elasticsearch) 4.前端数据的展示(Kibana) Elasticsearch介…...

不知道有用没用的Api
encodeURIComponent(https://www.baidu.com/?name啊啊啊) decodeURIComponent(https%3A%2F%2Fwww.baidu.com%2F%3Fname%3D%E5%95%8A%E5%95%8A%E5%95%8A) encodeURI(https://www.baidu.com/?name啊啊啊) decodeURI(https://www.baidu.com/?name%E5%95%8A%E5%95%8A%E5%95%8A) …...

(2023,LENS 视觉模型 LLM)迈向可见的语言模型:通过自然语言的镜头来看计算机视觉
Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language 公众号:EDPJ(添加 VX:CV_EDPJ 进交流群获取资料) 目录 0. 摘要 1. 简介 2. 相关工作 2.1 大语言模型能力 2.2 解决视觉和…...

线段树上树剖再拿线段树维护:0914T4
cp 一种常见套路: 如果在线段树上进行一段区间修改,那么必然是一段右节点一段左节点 这个过程其实就是zkw的本质 下面都要用zkw来理解 考虑原题,有一棵不规则的线段树 类似zkw,在这类题目中,我们要先把开区间变成闭…...

互联网医院系统|互联网医院探索未来医疗的新蓝海
随着互联网技术的飞速发展,互联网医院应运而生,为人们带来全新的医疗体验。本文将深入探讨互联网医院的开发流程、系统优势以及未来发展方向,带您领略医疗领域的新蓝海。互联网医院的开发流程是一个结合技术、医疗和用户需求的复杂过程。首先…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...