Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果
Pytorch中张量矩阵乘法函数使用说明
- 1 torch.mm() 函数
- 1.1 torch.mm() 函数定义及参数
- 1.2 torch.bmm() 官方示例
- 2 torch.bmm() 函数
- 2.1 torch.bmm() 函数定义及参数
- 2.2 torch.bmm() 官方示例
- 3 torch.matmul() 函数
- 3.1 torch.matmul() 函数定义及参数
- 3.2 torch.matmul() 规则约定
- 3.3 torch.matmul() 官方示例
- 3.4 高维数据实例解释
- 参考博文及感谢
1 torch.mm() 函数
全称为matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是2维;
1.1 torch.mm() 函数定义及参数
torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的矩阵
** mat2* (Tensor) – – 第二个要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
1.2 torch.bmm() 官方示例
mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)
torch.mm(mat1, mat2)tensor([[ 0.4851, 0.5037, -0.3633],[-0.0760, -3.6705, 2.4784]])
2 torch.bmm() 函数
全称为batch matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是3维;
2.1 torch.bmm() 函数定义及参数
torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一批要相乘的矩阵
** mat2* (Tensor) – – 第二批要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
2.2 torch.bmm() 官方示例
input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
res.size()torch.Size([10, 3, 5])
3 torch.matmul() 函数
可进行多维矩阵运算,根据不同输入维度进行广播机制然后运算,和点积类似,广播机制可参考之前博文torch.mul()函数。
3.1 torch.matmul() 函数定义及参数
torch.matmul(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的张量
** mat2* (Tensor) – – 第二个要相乘的张量
支持广播到通用形状、类型推广以及整数、浮点和复杂输入。
3.2 torch.matmul() 规则约定
(1)若两个都是1D(向量)的,则返回两个向量的点积;
(2)若两个都是2D(矩阵)的,则按照(矩阵相乘)规则返回2D;
(3)若input维度1D,other维度2D,则先将1D的维度扩充到2D(1D的维数前面+1),然后得到结果后再将此维度去掉,得到的与input的维度相同。即使作扩充(广播)处理,input的维度也要和other维度做对应关系;
(4)若input是2D,other是1D,则返回两者的点积结果;
(5)如果一个维度至少是1D,另外一个大于2D,则返回的是一个批矩阵乘法( a batched matrix multiply)
- (a)若input是1D,other是大于2D的,则类似于规则(3);
- (b)若other是1D,input是大于2D的,则类似于规则(4);
- (c)若input和other都是3D的,则与torch.bmm()函数功能一样;
- (d)如果input中某一维度满足可以广播(扩充),那么也是可以进行相乘操作的。例如 input(j,1,n,m)* other (k,m,p) = output(j,k,n,p)
matmul() 根据输入矩阵自动决定如何相乘。低维根据高维需求,合理广播。
3.3 torch.matmul() 官方示例
# vector x vector
tensor1 = torch.randn(3)
tensor2 = torch.randn(3)
torch.matmul(tensor1, tensor2).size()torch.Size([])
# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([3])
# batched matrix x broadcasted vector
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3])
# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
3.4 高维数据实例解释
直接看一个4维的二值例子,先看图(红虚线和实线是为了便于区分维度而添加),不懂再结合代码和结果分析,先做广播,然后对应矩阵进行乘积运算。

代码如下:
import torch
import numpy as npnp.random.seed(2022)
a = np.random.randint(low=0, high=2, size=(2, 2, 3, 4))
a = torch.tensor(a)
b = np.random.randint(low=0, high=2, size=(2, 1, 4, 3))
b = torch.tensor(b)
c = torch.matmul(a, b)
# or
# c = a @ b
print(a)
print("=============================================")
print(b)
print("=============================================")
print(c.size())
print("=============================================")
print(c)
运行结果为:
tensor([[[[1, 0, 1, 0],[1, 1, 0, 1],[0, 0, 0, 0]],[[1, 1, 1, 1],[1, 1, 0, 0],[0, 1, 0, 1]]],[[[0, 0, 0, 1],[0, 0, 0, 1],[0, 1, 0, 0]],[[1, 1, 1, 1],[1, 1, 1, 1],[0, 0, 0, 0]]]], dtype=torch.int32)
=============================================
tensor([[[[0, 1, 0],[1, 1, 0],[0, 0, 0],[1, 1, 0]]],[[[0, 1, 0],[1, 1, 1],[1, 1, 1],[1, 0, 1]]]], dtype=torch.int32)
=============================================
torch.Size([2, 2, 3, 3])
=============================================
tensor([[[[0, 1, 0],[2, 3, 0],[0, 0, 0]],[[2, 3, 0],[1, 2, 0],[2, 2, 0]]],[[[1, 0, 1],[1, 0, 1],[1, 1, 1]],[[3, 3, 3],[3, 3, 3],[0, 0, 0]]]], dtype=torch.int32)
参考博文及感谢
部分内容参考以下链接,这里表示感谢 Thanks♪(・ω・)ノ
参考博文1 官方文档查询地址
https://pytorch.org/docs/stable/index.html
参考博文2 Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别
https://blog.csdn.net/irober/article/details/113686080
相关文章:
Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果
Pytorch中张量矩阵乘法函数使用说明 1 torch.mm() 函数1.1 torch.mm() 函数定义及参数1.2 torch.bmm() 官方示例 2 torch.bmm() 函数2.1 torch.bmm() 函数定义及参数2.2 torch.bmm() 官方示例 3 torch.matmul() 函数3.1 torch.matmul() 函数定义及参数3.2 torch.matmul() 规则约…...
如何在matlab绘图的标题中添加变量?变量的格式化字符串输出浅析
文章目录 matlab的格式化输出控制符字段宽度、精度和对齐方式的控制matlab的格式化输出总结 matlab的格式化输出控制符 Matlab在画图的时候,采用title函数可以增加标题,该函数的输入是一个字符串,有时候我们想在字符串中添加一些变量&#x…...
Spring MVC 八 - 内置过滤器
SpringMVC内置如下过滤器: Form DataForwarded HeadersShallow ETagCORS Form Data 浏览器可以通过HTTP GET或HTTP POST提交form data(表单数据),但是非浏览器客户端可以通过HTTP PUT、HTTP DELETE、HTTP PATCH提交表单数据。但…...
@Change监听事件与vue监听属性:watch的区别?
change 和 watch 是 Vue 中用于处理数据变化的两种不同方式。 1. change: - change 是一个事件监听器,用于监听特定DOM元素的变化事件,通常用于表单元素(如输入框、下拉框等)的值变化。 - 它在用户与表单元素交互并提交了变化时触…...
C++面试记录之中望软件
上次面试体验不好,记录了,这次同样记录一次体验不好的面试,中望软件…直接写了名字,因为真的很无语😓 记录一下我不知道的问题 忘记录音了😢 1. main函数之前做了什么? 我:实话我…...
多功能翻译工具:全球翻译、润色和摘要生成 | 开源日报 0914
openai-translator/openai-translator Stars: 18.1k License: AGPL-3.0 这个项目是一个多功能翻译工具,由 OpenAI 提供支持。 可以进行全球单词翻译、单词润色和摘要生成等操作提供三种模式:翻译、润色和摘要支持 55 种不同语言的互相转换支持流模式允…...
在 Vue.js 中,使用 watch 监听data变量如:对象属性/data变量
watch 监听对象属性 在 Vue.js 中,使用 watch 监听对象属性的变化时,应该将属性名作为字符串传递给 watch 选项。 示例如下: javascript watch: {addform.isCheck1: function(newValue) {console.log(newValue);var quantity this.addform…...
vue中预览xml并高亮显示
项目中有需要将接口返回的数据流显示出来,并高亮显示; 1.后端接口返回blob,类型为xml,如图 2.页面中使用pre code标签: <pre v-if"showXML"><code class"language-xml">{{xml}}</code></pre> …...
MFC中嵌入显示opencv窗口
在MFC窗体中建立一个Picture Control控件,用于显示opencv窗口 在属性中设置图片控件的资源ID为IDC_PIC1 主要的思路: 使用GetWindowRect可以获取图片控件的区域 使用cv::resizeWindow可以设置opencv窗口的大小,适合图片控件的大小 使用cvGetWindowHandle函数可以获取到ope…...
金鸣识别网页版:轻松实现表格识别的神器
来百度APP畅享高清图片 金鸣识别网页版是一款功能强大的在线识别工具,它可对图片或PDF中的表格文本内容进行识别,还支持各种证票的结构化识别。以下是以表格识别为例,对金鸣识别网页版的操作说明进行详细介绍: 首先,打…...
DasViewer可以设置打开指定文件吗?
答:会员可以。工具里面选择坐标转换,输入源数据,设置好源坐标和目标坐标以及路径。根据两张坐标系的性质选择转换方式。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑…...
uniapp微信小程序用户隐私保护指引弹窗组件
<template><view v-if"showPrivacy" :class"privacyClass"><view :class"contentClass"><view class"title">用户隐私保护指引</view><view class"des">感谢您选择使用我们的小程序&am…...
Java的反射应用(Method和Class)
记录:473 场景:使用java.lang.reflect.Method和java.lang.Class类,根据Java反射原理实现使用指定字符串类名和方法名称,调用对应对象和对应方法。 版本:JDK 1.8。 1.使用Java反射调用指定类的指定方法 (1)参数说明…...
Java之泛型系列--Class使用泛型的方法(有示例)
原文网址:Java之泛型系列--Class使用泛型的方法(有示例)_IT利刃出鞘的博客-CSDN博客 简介 本文用示例介绍Java在方法前加泛型的使用。 类类型的写法 对象所对应的类的泛型写法 Class classAClass<T> classAClass<?> classB Class与Class<?&g…...
【【无用的知识之串口学习】】
无用的知识之串口学习 USART串口协议 •通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统 •通信协议:制定通信的规则,通信双方按照协议规则进行数据收发 就是我们并不能在芯片上设计完全部的一下子完成所有的设计&am…...
9月13日上课内容 第三章 ELK日志分析系统
本章结构 ELK日志分析系统简介 ELK日志分析系统分为 Elasticsearch Logstash Kibana 日志处理步骤 1.将日志进行集中化管理 2.将日志格式化(Logstash) 并输出到Elasticsearch 3.对格式化后的数据进行索引和存储 (Elasticsearch) 4.前端数据的展示(Kibana) Elasticsearch介…...
不知道有用没用的Api
encodeURIComponent(https://www.baidu.com/?name啊啊啊) decodeURIComponent(https%3A%2F%2Fwww.baidu.com%2F%3Fname%3D%E5%95%8A%E5%95%8A%E5%95%8A) encodeURI(https://www.baidu.com/?name啊啊啊) decodeURI(https://www.baidu.com/?name%E5%95%8A%E5%95%8A%E5%95%8A) …...
(2023,LENS 视觉模型 LLM)迈向可见的语言模型:通过自然语言的镜头来看计算机视觉
Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language 公众号:EDPJ(添加 VX:CV_EDPJ 进交流群获取资料) 目录 0. 摘要 1. 简介 2. 相关工作 2.1 大语言模型能力 2.2 解决视觉和…...
线段树上树剖再拿线段树维护:0914T4
cp 一种常见套路: 如果在线段树上进行一段区间修改,那么必然是一段右节点一段左节点 这个过程其实就是zkw的本质 下面都要用zkw来理解 考虑原题,有一棵不规则的线段树 类似zkw,在这类题目中,我们要先把开区间变成闭…...
互联网医院系统|互联网医院探索未来医疗的新蓝海
随着互联网技术的飞速发展,互联网医院应运而生,为人们带来全新的医疗体验。本文将深入探讨互联网医院的开发流程、系统优势以及未来发展方向,带您领略医疗领域的新蓝海。互联网医院的开发流程是一个结合技术、医疗和用户需求的复杂过程。首先…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
