02- pytorch 实现 RNN
一 导包
import torch
from torch import nn
from torch.nn import functional as F
import dltools
1.1 导入训练数据
batch_size, num_steps = 32, 35
# 更改了默认的文件下载方式,需要将 article 文件放入该文件夹
train_iter, vocab = dltools.load_data_time_machine(batch_size, num_steps)
1.2 构造神经网络
num_hiddens = 256
# 构造了一个具有256个隐藏神经单元的单隐藏层的循环神经网络
rnn_layer = nn.RNN(len(vocab), num_hiddens)
构造了一个 循环神经网络 (RNN) 层,该 RNN 层具有以下特性:
-
num_hiddens = 256: 这行代码定义了 RNN 层中的隐藏单元数量,即 RNN 层内部神经元的数量。在这个例子中,设置为 256,意味着 RNN 层将有 256 个隐藏神经单元。 -
nn.RNN(len(vocab), num_hiddens): 这行代码 创建了一个 RNN 层 的实例。它的参数如下:-
len(vocab): 这是 输入数据的特征维度。在循环神经网络中,输入数据通常是一个序列,每个时间步的输入是一个向量。len(vocab)表示词汇表的大小,它代表了序列中的每个时间步可能的输入的数量。在自然语言处理任务中,词汇表的大小通常对应于词汇表中不同词汇的数量。 -
num_hiddens: 这是 RNN 层内部的 隐藏单元数量,根据之前定义的值为 256。
-
综上所述,这段代码创建了一个 具有 256 个隐藏神经单元的单隐藏层的循环神经网络层。这个 RNN 层可以用来处理序列数据,例如文本数据,在文本数据中,每个时间步可以对应一个词汇表中的一个词或一个词的嵌入表示。
1.3 初始化隐藏状态
# 初始化隐藏状态
state = torch.zeros((1, batch_size, num_hiddens))
创建了一个 全零的张量作为隐藏状态。张量的形状是 (1, batch_size, num_hiddens),其中:
1表示时间步的数量,这里初始化的是一个初始时间步的隐藏状态。batch_size表示批量大小,即一次处理的样本数量。num_hiddens表示每个时间步的隐藏单元数量,即隐藏状态的维度。
二 构建一个完整的循环神经网络
# 构建一个完整的循环神经网络
class RNNModel(nn.Module):def __init__(self, rnn_layer, vocab_size, **kwargs):super().__init__(**kwargs)self.rnn = rnn_layerself.vocab_size = vocab_sizeself.num_hiddens = self.rnn.hidden_sizeif not self.rnn.bidirectional:self.num_directions = 1self.linear = nn.Linear(self.num_hiddens, self.vocab_size)else:self.num_directions = 2self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)# 前向传播def forward(self, inputs, state):X = F.one_hot(inputs.T.long(), self.vocab_size)X = X.to(torch.float32)Y, state = self.rnn(X, state)output = self.linear(Y.reshape(-1, Y.shape[-1]))return output, state# 初始化隐藏状态def begin_state(self, device, batch_size=1):return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)
该部分定义了一个名为 RNNModel 的 PyTorch 模型类,该模型是一个循环神经网络 (RNN) 模型,用于处理序列数据。
-
__init__方法:这是类的构造函数,用于初始化模型的各个组件。在这里,做了以下工作:super().__init__(**kwargs)调用了父类的构造函数,确保正确初始化模型。self.rnn = rnn_layer存储了 传入的 RNN 层。self.vocab_size = vocab_size存储了 词汇表的大小。self.num_hiddens = self.rnn.hidden_size获取了 RNN 层的隐藏状态大小。- 根据 RNN 是否是双向的,选择性地创建一个线性层,用于将 RNN 输出映射到词汇表大小的空间。如果是双向 RNN,则输入的维度是隐藏状态大小的两倍。
-
forward方法:这个方法定义了 前向传播 过程。它接受输入inputs和当前的隐藏状态state。在前向传播中,它执行以下操作:- 使用
F.one_hot将输入inputs转化为 独热编码,以便与词汇表大小匹配。然后将其转换为浮点数张量。 - 将输入数据和隐藏状态传递给 RNN 层,以获得输出
Y和新的 隐藏状态state。 - 将 RNN 输出
Y重塑成 二维张量,然后通过线性层self.linear将其映射到词汇表大小的空间,并返回输出结果。
- 使用
-
begin_state方法:这个方法用于 初始化隐藏状态,返回一个全零的张量,其形状取决于 RNN 的层数、方向数、隐藏单元数以及批量大小。
2.1 实例化模型
# 在训练前,跑下模型
device = dltools.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
创建了一个 RNNModel对象,该对象接受一个rnn_layer和一个词汇表大小作为参数。最后,它将模型移动到之前确定的设备上
三 执行训练
# 训练
num_epochs, lr = 200, 0.1
dltools.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
3.1 执行预测
dltools.predict_ch8('time traveller', 10, net, vocab, device)相关文章:
02- pytorch 实现 RNN
一 导包 import torch from torch import nn from torch.nn import functional as F import dltools 1.1 导入训练数据 batch_size, num_steps 32, 35 # 更改了默认的文件下载方式,需要将 article 文件放入该文件夹 train_iter, vocab dltools.load_data_time_…...
算法课作业1
https://vjudge.net/contest/581138 A - Humidex 模拟题 题目大意 给三个类型数字通过公式来回转化 思路 求e的对数有log函数,不懂为什么不会出精度错误,很迷,给的三个数字也没有顺序,需要多判断。 #include<cstdio>…...
linux文本处理 两行变一行
linux简单文本处理 [rootkvm ~]# cat test 1.1.1.1 test1 2.2.2.2 test2 3.3.3.3 test3 192.168.1.2 test4 10.23.9.19 test5 cat test | awk /^[0-9]/{T$1;next;}{print T,$1}1.1.1.1 test1 2.2.2.2 test2 3.3.3.3 test3 192.168.1.2 test4 10.23.9.19 test5 cat test | …...
第二次面试 9.15
首先就是自我介绍 项目拷打 总体介绍一下项目 谈一下对socket的理解 在数据接收阶段,如何实现一个异步的数据处理 谈一谈对qt信号槽的理解 有想过如何去编写一个信号槽吗 你是如何使用CMAKE编译文件的 C11特性了解些啥 shared_ptr 和 unique_ptr 的运用场景 …...
基于matlab实现的平面波展开法二维声子晶体能带计算程序
Matlab 平面波展开法计算二维声子晶体二维声子晶体带结构计算,材料是铅柱在橡胶基体中周期排列,格子为正方形。采用PWE方法计算 完整程序: %%%%%%%%%%%%%%%%%%%%%%%%% clear;clc;tic;epssys1.0e-6; %设定一个最小量,避免系统截断误差或除零错…...
Minio入门系列【2】纠删码
1 纠删码 Minio使用纠删码erasure code和校验和checksum来保护数据免受硬件故障和无声数据损坏。 即便丢失一半数量(N/2)的硬盘,仍然可以恢复数据 1.1 什么叫纠删码 纠删码是一种用于重建丢失或损坏数据的数学算法。 纠删码(e…...
基于永磁同步发电机的风力发电系统研究(Simulink实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
5.后端·新建子模块与开发(自动模式)
文章目录 学习资料自动生成模式创建后端三层 学习资料 https://www.bilibili.com/video/BV13g411Y7GS?p11&spm_id_frompageDriver&vd_sourceed09a620bf87401694f763818a31c91e 自动生成模式创建后端三层 首先,运行起来若依的前后端整个项目,…...
vue的data为什么要写成data(return{})这样而不是data:{}这样?
在Vue.js中,为什么要将data写成一个返回对象的函数data()而不是一个普通的对象data: {} 为什么? 因为Vue.js的组件实例是可复用的,而且它们可以在应用中多次实例化。通过将data定义为一个返回对象的函数,可以确保每个组件实例都…...
MySQL基础运维知识点大全
一. MySQL基本知识 1. 目录的功能 通用 Unix/Linux 二进制包的 MySQL 安装下目录的相关功能 目录目录目录binMySQLd服务器,客户端和实用程序docs信息格式的 MySQL 手册manUnix 手册页include包括(头)文件lib图书馆share用于数据库安装的错…...
javascript获取样式表的规则及读取与写入
CSSStyleSheet是继承了StyleSheet的接口属性,它是用于找当前文档中的<link rel“” href“”…>这样文件的,有以下属性:lenght,cssRules,title,href,type,deleteRule,insertRule等 CSSStyleRule是继承于CSSRule,它是用于找<link re…...
什么是promise?
是JavaScript中用于处理异步操作的一种机制。 异步操作,例如从服务器获取数据、读取文件、执行数据库查询等等。 经典使用:Axios 是一个基于Promise的HTTP客户端 Promise具有三个状态: Pending(待定):Pr…...
从零开始学习软件测试-第45天笔记
monkey事件 事件:对app进行的操作,比如触摸事件,滑动事件...动作:构成一个事件所需要的步骤。 调整事件的百分比 adb shell monkey -p 包名 -v -v --pct-xxx 百分比 次数>输出文件的路径 分析日志有没有报错 到日志中去找…...
visual studio常用快捷键
CtrlM、CtrlO 折叠到定义 CtrlM、CtrlM 折叠当前定义 CtrlM、CtrlA 折叠全部 CtrlK、CtrlD 自动编排代码格式 F12 转到定义 ShiftF12 查看所有定义 ctrl] 转到定义首部或尾部 ctrlX 未选中文本时,剪切/删除光标所在行。ctrlV 未选中文本时,粘贴到…...
数据变换:数据挖掘的准备工作之一
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
Go语言实践案例之简单字典
一、程序要实现效果: 在命令行调用程序的时候,可以在命令行的后面查询一个单词,然后会输出单词的音标和注释。 二、思路分析: 定义一个结构体 DictRequest,用于表示翻译请求的数据结构。其中包含了 TransType&#…...
笔试面试相关记录(3)
(1)String String和String.append()的底层实现 C中string append函数的使用与字符串拼接「建议收藏」-腾讯云开发者社区-腾讯云 (tencent.com) String String 在 第二个String中遇到\0就截止,append()的方法则是所有字符都会加在后面。 &…...
第6章_瑞萨MCU零基础入门系列教程之串行通信接口(SCI)
本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id728461040949 配套资料获取:https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总: ht…...
开源免费的流程图软件draw.io
2023年9月16日,周六上午 想买微软的visio,但发现不是很值得,因为我平时也不是经常需要画图。 所以我最后还是决定使用开源免费的draw.io来画图 draw.io网页版的网址: Flowchart Maker & Online Diagram Software draw.io的…...
Python绘图系统19:添加时间轴以实现动态绘图
文章目录 时间轴单帧跳转源代码 Python绘图系统: 📈从0开始的3D绘图系统📉一套3D坐标,多个函数📊散点图、极坐标和子图自定义控件:绘图风格📉风格控件📊定制绘图风格坐标设置进阶&a…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
