当前位置: 首页 > news >正文

基于matlab实现的平面波展开法二维声子晶体能带计算程序

Matlab 平面波展开法计算二维声子晶体二维声子晶体带结构计算,材料是铅柱在橡胶基体中周期排列,格子为正方形。采用PWE方法计算

完整程序:

%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;tic;epssys=1.0e-6; %设定一个最小量,避免系统截断误差或除零错误
 
%%%%%%%%%%%%%%%%%%%%%%%%%%

%定义实际的正空间格子基矢
%%%%%%%%%%%%%%%%%%%%%%%%%%
a=0.02;
a1=a*[1 0];
a2=a*[0 1];
%%%%%%%%%%%%%%%%%%%%%%%%%%

%定义晶格的参数
%%%%%%%%%%%%%%%%%%%%%%%%%%
rho1=11600;E1=4.08e10;mju1=1.49e10;lambda1=mju1*(E1-2*mju1)/(3*mju1-E1); %散射体的材料参数
rho2=1300;E2=1.175e5;mju2=4e4;lambda2=mju2*(E2-2*mju2)/(3*mju2-E2); %基体的材料参数
Rc=0.006; %散射体截面半径
Ac=pi*(Rc)^2; %散射体截面面积
Au=a^2; %二维格子原胞面积
Pf=Ac/Au; %填充率
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%生成倒格基矢
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
b1=2*pi/a*[1 0];
b2=2*pi/a*[0 1];
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%选定参与运算的倒空间格矢量,即参与运算的平面波数量
%设定一个l,m的取值范围,变化l,m即可得出参与运算的平面波集合
NrSquare=10; %选定倒空间的尺度,即l,m(倒格矢G=l*b1+m*b2)的取值范围。
             %NrSquare确定后,使用Bloch波数目可能为(2*NrSquare+1)^2
G=zeros((2*NrSquare+1)^2,2); %初始化可能使用的倒格矢矩阵
i=1;
for l=-NrSquare:NrSquare
    for m=-NrSquare:NrSquare
        G(i,:)=l*b1+m*b2;
        i=i+1;
    end;
end;
NG=i-1; %实际使用的Bloch波数目
G=G(1:NG,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%生成k空间的rho(Gi-Gj),mju(Gi-Gj),lambda(Gi-Gj)值,i,j从1到NG。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rho=zeros(NG,NG);mju=zeros(NG,NG);lambda=zeros(NG,NG);
for i=1:NG
    for j=1:NG
        Gij=norm(G(j,:)-G(i,:));
        if (Gij<epssys)
            rho(i,j)=rho1*Pf+rho2*(1-Pf);
            mju(i,j)=mju1*Pf+mju2*(1-Pf);
            lambda(i,j)=lambda1*Pf+lambda2*(1-Pf);
        else
            rho(i,j)=(rho1-rho2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
            mju(i,j)=(mju1-mju2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
            lambda(i,j)=(lambda1-lambda2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
        end;
    end;
end;
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%定义简约布里渊区的各高对称点
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T=(2*pi/a)*[epssys 0];
M=(2*pi/a)*[1/2 1/2];
X=(2*pi/a)*[1/2 0];
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%对于简约布里渊区边界上的每个k,求解其特征频率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
THETA_A=zeros(NG,NG); %待解的本征方程A矩阵
THETA_B=zeros(NG,NG); %待解的本征方程B矩阵
Nkpoints=10; %每个方向上取的点数
stepsize=0:1/(Nkpoints-1):1; %每个方向上步长
TX_eig=zeros(Nkpoints,NG); %沿TX方向的波的待解的特征频率矩阵
XM_eig=zeros(Nkpoints,NG); %沿XM方向的波的待解的特征频率矩阵
MT_eig=zeros(Nkpoints,NG); %沿MT方向的波的待解的特征频率矩阵
for n=1:Nkpoints
    fprintf(['\n k-point:',int2str(n),'of',int2str(Nkpoints),'.\n']);
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于TX(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    TX_step=stepsize(n)*(X-T)+T;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=TX_step+G(i,:);
            kGj=TX_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解TX(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    TX_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于XM(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    XM_step=stepsize(n)*(M-X)+X;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=XM_step+G(i,:);
            kGj=XM_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解XM(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    XM_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于MT(正方格子)方向上的每个k值,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    MT_step=stepsize(n)*(T-M)+M;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %n 求本征矩阵的元素
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:NG
        for j=1:NG
            kGi=MT_step+G(i,:);
            kGj=MT_step+G(j,:);
            THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);      
            THETA_B(i,j)=rho(i,j); 
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %求解MT(正方格子)方向上的k矩阵的特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    MT_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';  
end;
fprintf('\n Calculation Time:%d sec',toc);
save pbs2D
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%绘制声子晶体能带结构图
%首先将特定方向(正方格子:TX,XM,MT)离散化
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
kaxis=0;
TXaxis=kaxis:norm(T-X)/(Nkpoints-1):(kaxis+norm(T-X));
kaxis=kaxis+norm(T-X);
XMaxis=kaxis:norm(M-X)/(Nkpoints-1):(kaxis+norm(X-M));
kaxis=kaxis+norm(X-M);
MTaxis=kaxis:norm(T-M)/(Nkpoints-1):(kaxis+norm(T-M));
kaxis=kaxis+norm(T-M);
 
Ntraject=3; %所需绘制的特定方向的数目
EigFreq=zeros(Ntraject*Nkpoints,1);
figure(1)
hold on;
Nk=Nkpoints;
 
 
for k=1:NG 
    for i=1:Nkpoints 
        EigFreq(i+0*Nk)=TX_eig(i,k)/(2*pi); 
        EigFreq(i+1*Nk)=XM_eig(i,k)/(2*pi); 
        EigFreq(i+2*Nk)=MT_eig(i,k)/(2*pi); 
    end; 
    plot(TXaxis(1:Nk),EigFreq(1+0*Nk:1*Nk),'b',... 
         XMaxis(1:Nk),EigFreq(1+1*Nk:2*Nk),'b',... 
         MTaxis(1:Nk),EigFreq(1+2*Nk:3*Nk),'b'); 
end;
grid on;
hold off;
titlestr='传统平面波展开法计算得到的二维声子晶体能带结构图';
title(titlestr);
xlabel('波矢k');
ylabel('频率f/Hz');
 
axis([0 MTaxis(Nkpoints) 0 800]);
set(gca,'XTick',[TXaxis(1) TXaxis(Nkpoints) XMaxis(Nkpoints) MTaxis(Nkpoints)]);
xtixlabel=char('T','X','M','T');
set(gca,'XTickLabel',xtixlabel);
 

相关文章:

基于matlab实现的平面波展开法二维声子晶体能带计算程序

Matlab 平面波展开法计算二维声子晶体二维声子晶体带结构计算&#xff0c;材料是铅柱在橡胶基体中周期排列&#xff0c;格子为正方形。采用PWE方法计算 完整程序: %%%%%%%%%%%%%%%%%%%%%%%%% clear;clc;tic;epssys1.0e-6; %设定一个最小量&#xff0c;避免系统截断误差或除零错…...

Minio入门系列【2】纠删码

1 纠删码 Minio使用纠删码erasure code和校验和checksum来保护数据免受硬件故障和无声数据损坏。 即便丢失一半数量&#xff08;N/2&#xff09;的硬盘&#xff0c;仍然可以恢复数据 1.1 什么叫纠删码 纠删码是一种用于重建丢失或损坏数据的数学算法。 纠删码&#xff08;e…...

基于永磁同步发电机的风力发电系统研究(Simulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

5.后端·新建子模块与开发(自动模式)

文章目录 学习资料自动生成模式创建后端三层 学习资料 https://www.bilibili.com/video/BV13g411Y7GS?p11&spm_id_frompageDriver&vd_sourceed09a620bf87401694f763818a31c91e 自动生成模式创建后端三层 首先&#xff0c;运行起来若依的前后端整个项目&#xff0c;…...

vue的data为什么要写成data(return{})这样而不是data:{}这样?

在Vue.js中&#xff0c;为什么要将data写成一个返回对象的函数data()而不是一个普通的对象data: {} 为什么&#xff1f; 因为Vue.js的组件实例是可复用的&#xff0c;而且它们可以在应用中多次实例化。通过将data定义为一个返回对象的函数&#xff0c;可以确保每个组件实例都…...

MySQL基础运维知识点大全

一. MySQL基本知识 1. 目录的功能 通用 Unix/Linux 二进制包的 MySQL 安装下目录的相关功能 目录目录目录binMySQLd服务器&#xff0c;客户端和实用程序docs信息格式的 MySQL 手册manUnix 手册页include包括&#xff08;头&#xff09;文件lib图书馆share用于数据库安装的错…...

javascript获取样式表的规则及读取与写入

CSSStyleSheet是继承了StyleSheet的接口属性,它是用于找当前文档中的<link rel“” href“”…>这样文件的&#xff0c;有以下属性&#xff1a;lenght,cssRules,title,href,type,deleteRule,insertRule等 CSSStyleRule是继承于CSSRule&#xff0c;它是用于找<link re…...

什么是promise?

是JavaScript中用于处理异步操作的一种机制。 异步操作&#xff0c;例如从服务器获取数据、读取文件、执行数据库查询等等。 经典使用&#xff1a;Axios 是一个基于Promise的HTTP客户端 Promise具有三个状态&#xff1a; Pending&#xff08;待定&#xff09;&#xff1a;Pr…...

从零开始学习软件测试-第45天笔记

monkey事件 事件&#xff1a;对app进行的操作&#xff0c;比如触摸事件&#xff0c;滑动事件...动作&#xff1a;构成一个事件所需要的步骤。 调整事件的百分比 adb shell monkey -p 包名 -v -v --pct-xxx 百分比 次数>输出文件的路径 分析日志有没有报错 到日志中去找…...

visual studio常用快捷键

CtrlM、CtrlO 折叠到定义 CtrlM、CtrlM 折叠当前定义 CtrlM、CtrlA 折叠全部 CtrlK、CtrlD 自动编排代码格式 F12 转到定义 ShiftF12 查看所有定义 ctrl] 转到定义首部或尾部 ctrlX 未选中文本时&#xff0c;剪切/删除光标所在行。ctrlV 未选中文本时&#xff0c;粘贴到…...

数据变换:数据挖掘的准备工作之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…...

Go语言实践案例之简单字典

一、程序要实现效果&#xff1a; 在命令行调用程序的时候&#xff0c;可以在命令行的后面查询一个单词&#xff0c;然后会输出单词的音标和注释。 二、思路分析&#xff1a; 定义一个结构体 DictRequest&#xff0c;用于表示翻译请求的数据结构。其中包含了 TransType&#…...

笔试面试相关记录(3)

&#xff08;1&#xff09;String String和String.append()的底层实现 C中string append函数的使用与字符串拼接「建议收藏」-腾讯云开发者社区-腾讯云 (tencent.com) String String 在 第二个String中遇到\0就截止&#xff0c;append()的方法则是所有字符都会加在后面。 &…...

第6章_瑞萨MCU零基础入门系列教程之串行通信接口(SCI)

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id728461040949 配套资料获取&#xff1a;https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总&#xff1a; ht…...

开源免费的流程图软件draw.io

2023年9月16日&#xff0c;周六上午 想买微软的visio&#xff0c;但发现不是很值得&#xff0c;因为我平时也不是经常需要画图。 所以我最后还是决定使用开源免费的draw.io来画图 draw.io网页版的网址&#xff1a; Flowchart Maker & Online Diagram Software draw.io的…...

Python绘图系统19:添加时间轴以实现动态绘图

文章目录 时间轴单帧跳转源代码 Python绘图系统&#xff1a; &#x1f4c8;从0开始的3D绘图系统&#x1f4c9;一套3D坐标&#xff0c;多个函数&#x1f4ca;散点图、极坐标和子图自定义控件&#xff1a;绘图风格&#x1f4c9;风格控件&#x1f4ca;定制绘图风格坐标设置进阶&a…...

深度解析shell脚本的命令的原理之rm

rm 是 Unix/Linux 系统中的一个基本命令&#xff0c;用于删除文件或目录。以下是对这个命令的深度分析&#xff1a; 基本操作&#xff1a;rm 命令删除一个或多个文件或目录。这是通过从文件系统中移除链接来完成的。在 Unix/Linux 中&#xff0c;文件是通过链接&#xff08;可以…...

RPA机器人流程自动化专题培训大纲(供大家参考使用)

一、RPA机器人流程自动化概述 RPA的定义和发展历程RPA的应用场景和优势RPA与人工智能的关系 二、RPA机器人流程自动化基础知识 RPA的基本原理和技术架构RPA的常用技术和工具RPA的编程语言和开发环境 三、RPA机器人流程自动化实战应用 如何进行业务流程分析与优化如何利用R…...

Python用若干列的数据多条件筛选、去除Excel数据并批量绘制直方图

本文介绍基于Python&#xff0c;读取Excel数据&#xff0c;以一列数据的值为标准&#xff0c;对这一列数据处于指定范围的所有行&#xff0c;再用其他几列数据数值&#xff0c;加以筛选与剔除&#xff1b;同时&#xff0c;对筛选与剔除前、后的数据分别绘制若干直方图&#xff…...

驱动开发,IO多路复用实现过程,epoll方式

1.框架图 被称为当前时代最好用的io多路复用方式&#xff1b; 核心操作&#xff1a;一棵树&#xff08;红黑树&#xff09;、一张表&#xff08;内核链表&#xff09;以及三个接口&#xff1b; 思想&#xff1a;&#xff08;fd代表文件描述符&#xff09; epoll要把检测的事件…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...