Python用若干列的数据多条件筛选、去除Excel数据并批量绘制直方图
本文介绍基于Python,读取Excel数据,以一列数据的值为标准,对这一列数据处于指定范围的所有行,再用其他几列数据数值,加以筛选与剔除;同时,对筛选与剔除前、后的数据分别绘制若干直方图,并将结果数据导出保存为一个新的Excel表格文件的方法。
首先,我们来明确一下本文的具体需求。现有一个Excel表格文件,在本文中我们就以.csv
格式的文件为例;其中,如下图所示,这一文件中有一列(在本文中也就是days
这一列)数据,我们将其作为基准数据,希望首先取出days
数值处于0
至45
、320
至365
范围内的所有样本(一行就是一个样本),进行后续的操作。
其次,对于取出的样本,再依据其他4
列(在本文中也就是blue_dif
、green_dif
、red_dif
与inf_dif
这4
列)数据,将这4
列数据不在指定数值区域内的行删除。在这一过程中,我们还希望绘制在数据删除前、后,这4
列(也就是blue_dif
、green_dif
、red_dif
与inf_dif
这4
列)数据各自的直方图,一共是8
张图。最后,我们还希望将删除上述数据后的数据保存为一个新的Excel表格文件。
知道了需求,我们就可以撰写代码。本文所用的代码如下所示。
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 12 07:55:40 2023@author: fkxxgis
"""import numpy as np
import pandas as pd
import matplotlib.pyplot as pltoriginal_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR.csv"
# original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/TEST.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR_New.csv"df = pd.read_csv(original_file_path)blue_original = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_original = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_original = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_original = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']mask = ((df['days'] >= 0) & (df['days'] <= 45)) | ((df['days'] >= 320) & (df['days'] <= 365))
range_min = -0.03
range_max = 0.03df.loc[mask, 'blue_dif'] = df.loc[mask, 'blue_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'green_dif'] = df.loc[mask, 'green_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'red_dif'] = df.loc[mask, 'red_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'inf_dif'] = df.loc[mask, 'inf_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x], p =[0.9, 0.1]))
df = df.dropna()blue_new = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_new = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_new = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_new = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']plt.figure(0)
plt.hist(blue_original, bins = 50)
plt.figure(1)
plt.hist(green_original, bins = 50)
plt.figure(2)
plt.hist(red_original, bins = 50)
plt.figure(3)
plt.hist(inf_original, bins = 50)plt.figure(4)
plt.hist(blue_new, bins = 50)
plt.figure(5)
plt.hist(green_new, bins = 50)
plt.figure(6)
plt.hist(red_new, bins = 50)
plt.figure(7)
plt.hist(inf_new, bins = 50)df.to_csv(result_file_path, index=False)
首先,我们通过pd.read_csv
函数从指定路径的.csv
文件中读取数据,并将其存储在名为df
的DataFrame中。
接下来,通过一系列条件筛选操作,从原始数据中选择满足特定条件的子集。具体来说,我们筛选出了在blue_dif
、green_dif
、red_dif
与inf_dif
这4
列中数值在一定范围内的数据,并将这些数据存储在名为blue_original
、green_original
、red_original
和inf_original
的新Series中,这些数据为我们后期绘制直方图做好了准备。
其次,创建一个名为mask
的布尔掩码,该掩码用于筛选满足条件的数据。在这里,它筛选出了days
列的值在0
到45
之间或在320
到365
之间的数据。
随后,我们使用apply
函数和lambda
表达式,对于days
列的值在0
到45
之间或在320
到365
之间的行,如果其blue_dif
、green_dif
、red_dif
与inf_dif
这4
列的数据不在指定范围内,那么就将这列的数据随机设置为NaN,p =[0.9, 0.1]
则是指定了随机替换为NaN的概率。这里需要注意,如果我们不给出p =[0.9, 0.1]
这样的概率分布,那么程序将依据均匀分布的原则随机选取数据。
最后,我们使用dropna
函数,删除包含NaN值的行,从而得到筛选处理后的数据。其次,我们依然根据这四列的筛选条件,计算出处理后的数据的子集,存储在blue_new
、green_new
、red_new
和inf_new
中。紧接着,使用Matplotlib创建直方图来可视化原始数据和处理后数据的分布;这些直方图被分别存储在8
个不同的图形中。
代码的最后,将处理后的数据保存为新的.csv
文件,该文件路径由result_file_path
指定。
运行上述代码,我们将得到8
张直方图,如下图所示。且在指定的文件夹中看到结果文件。
至此,大功告成。
欢迎关注:疯狂学习GIS
相关文章:

Python用若干列的数据多条件筛选、去除Excel数据并批量绘制直方图
本文介绍基于Python,读取Excel数据,以一列数据的值为标准,对这一列数据处于指定范围的所有行,再用其他几列数据数值,加以筛选与剔除;同时,对筛选与剔除前、后的数据分别绘制若干直方图ÿ…...

驱动开发,IO多路复用实现过程,epoll方式
1.框架图 被称为当前时代最好用的io多路复用方式; 核心操作:一棵树(红黑树)、一张表(内核链表)以及三个接口; 思想:(fd代表文件描述符) epoll要把检测的事件…...

java在mysql中查询内容无法塞入实体类中,报错 all elements are null
目录 一、问题描述二、解决方案 一、问题描述 java项目中整体配置了mysql的驼峰式字段匹配规则。 mybatis.configuration.map-underscore-to-camel-casetrue由于项目需求,需要返回字段为file_id,file_url,并且放入实体类中,实体…...

Linux 挂载
挂载需要挂载源和挂载点 虚拟机本身就有的挂源 添加硬件 重启虚拟机 操作程序 sudo fdisk -l //以管理员权限查看电脑硬盘使用情况sudo mkfs.ext4 /dev/sdb //以管理员身份格式化硬盘sudo mkdir guazai //创建挂载文件夹 sudo mount /dev/sdb/guazai //将挂载源接上挂载点 s…...

[面试] 15道最典型的k8s面试题
文章目录 在 Kubernetes 中,有以下常见的资源对象:1.什么是 Kubernetes?它的主要特点是什么?2. Kubernetes 中的 Pod 是什么?它的作用是什么?3.Kubernetes 中的 Deployment 和 StatefulSet 有何区别&#x…...
lintcode 552 · 创建最大数 【算法 数组 贪心 hard】
题目 https://www.lintcode.com/problem/552/description 描述 给出两个长度分别是m和n的数组来表示两个大整数,数组的每个元素都是数字0-9。从这两个数组当中选出k个数字来创建一个最大数,其中k满足k < m n。选出来的数字在创建的最大数里面的位置…...

ModbusTCP服务端
1在Device下,添加设备net: 公交车。 2在net下添加 ModbusTCP...

Middleware ❀ Hadoop功能与使用详解(HDFS+YARN)
文章目录 1、服务概述1.1 HDFS1.1.1 架构解析1.1.1.1 Block 数据块1.1.1.2 NameNode 名称节点1.1.1.3 Secondary NameNode 第二名称节点1.1.1.4 DataNode 数据节点1.1.1.5 Block Caching 块缓存1.1.1.6 HDFS Federation 联邦1.1.1.7 Rack Awareness 机架感知 1.1.2 读写操作与可…...

Matlab图像处理-从RGB转换为HSV
从RGB转换为HSV HSV彩色系统基于圆柱坐标系。从RGB转换为HSV需要开发将(笛卡儿坐标系中的)RGB值映射到圆柱坐标系的公式。多数计算机图形学教材中已详细推导了这一公式,故此处从略。 从RGB转换为HSV的MATLAB函数是rgb2hsv,其语法为: hsv_imag…...
iOS Error Domain=PHPhotosErrorDomain Code=3300
AVCapturePhoto的数据保存到 PHPhotoLibrary的时候报错Error DomainPHPhotosErrorDomain Code3300解决代码(也可以使用addResourceWithType:data:options:来添加数据到request,JEPG的实测可以,raw的不确定): [PHPhoto…...

LeetCode(力扣)435. 无重叠区间Python
LeetCode435. 无重叠区间 题目链接代码 题目链接 https://leetcode.cn/problems/non-overlapping-intervals/ 代码 class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if not intervals:return 0intervals.sort(keylambda x: x[0])co…...
opencv c++实现鼠标框选区域并显示选择的图片区域
OpenCV可以使用setMouseCallback设置鼠标事件的回调函数,从而然后根据需要进行处理。 setMouseCallback原型为: void cv::setMouseCallback(const cv::String& windowName, MouseCallback onMouse, void* userData = 0); 其中,参数说明如下:windowName:窗口名称 onMo…...

Python实现自主售卖机
1 问题 在python中我们常常使用到条件判断,if语句时常见的条件判断语句之一。那么如何使用if语句实现根据情况自动选择商品进行售卖呢? 2 方法 根据if语句执行时从上往下执行的特点,使用if语句、dict和list来实现整个流程。 代码清单 1 drink…...
任务复杂度与人机
任务复杂度计算是指根据任务的难易程度和需要的资源投入来评估任务的复杂程度。一般来说,任务复杂度计算会考虑以下几个因素: 难度程度:任务的难度程度是指完成任务所需要的知识、技能和经验等的要求。较高的难度程度会增加任务的复杂度。任务…...

Windows关闭zookeeper、rocketmq日志输出以及修改rocketmq的JVM内存占用大小
JDK-1.8zookeeper-3.4.14rocketmq-3.2.6 zookeeper 进入到zookeeper的conf目录 清空配置文件,只保留下面这一行。zookeeper关闭日志输出相对简单。 log4j.rootLoggerOFFrocketmq 进入到rocketmq的conf目录 logback_broker.xml <?xml version"1.0&q…...

Convai:让虚拟游戏角色更智能的对话AI人工智能平台
【产品介绍】 名称 Convai 具体描述 Convai是一款专为虚拟世界而设计的对话人工智能平台,它可以让你为你的游戏或应用中的角色 赋予人类般的对话能力。Convai利用了最先进的生成式对话人工智能技术,让你的角色可以…...

【送书活动】大模型赛道如何实现华丽的弯道超车
文章目录 导读前言AI/ML 模型训练任务对数据平台的需求01 具备对海量小文件的频繁数据访问的 I/O 效率02 提高 GPU 利用率,降低成本并提高投资回报率03 支持各种存储系统的原生接口04 支持单云、混合云和多云部署 核心密码01 通过数据抽象化统一数据孤岛02 通过分布…...

opencv dnn模块 示例(16) 目标检测 object_detection 之 yolov4
博客【opencv dnn模块 示例(3) 目标检测 object_detection (2) YOLO object detection】 测试了yolov3 及之前系列的模型,有在博客【opencv dnn模块 示例(15) opencv4.2版本dnn支持cuda加速(vs2015异常解决)】 说明了如何使用dnn模块进行cuda…...

Python提取JSON数据中的键值对并保存为.csv文件
本文介绍基于Python,读取JSON文件数据,并将JSON文件中指定的键值对数据转换为.csv格式文件的方法。 在之前的文章Python提取JSON文件中的指定数据并保存在CSV或Excel表格文件内(https://blog.csdn.net/zhebushibiaoshifu/article/details/132…...

使用IDEA开发Servlet
一、新建工程 二、填写新工程的基本信息 javaee8的项目可以运行在tomcat9 三、配置tomcat 1、编辑server信息 “On frame deactivation”的意思是idea窗口发生切换时。 2、编辑部署信息 war exploded方式,这种方式是以文件夹方式部署的,支持热加载。 …...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...