当前位置: 首页 > news >正文

linux驱动开发day6--(epoll实现IO多路复用、信号驱动IO、设备树以及节点和属性解析相关API使用)

一、IO多路复用--epoll实现

1.核心:

红黑树、一张表以及三个接口、

2.实现过程及API

1)创建epoll句柄/创建红黑树根节点

int epfd=epoll_create(int size--无意义,>0即可)----------成功:返回根节点对应文件描述符,失败:-1

2)将要监测的文件描述符挂载到红黑树上

a.struct epoll_event event;定义事件结构体

b.struct epoll_event events[10];定义存放就绪事件描述符的数组

c.添加准备就绪事件进入epoll,如:

event.events = EPOLLIN; // 读事件

event.data.fd = fd1;

epoll_ctl(epfd, EPOLL_CTL_ADD---控制方法, fd1, &event)

3)监听事件是否发生,阻塞等待准备好的文件描述符

epoll_wait(epfd, events, 10, -1--不关心是否超时);

返回值:

>0:准备好的文件描述符的个数

=0:超时

<0:失败

4)遍历数组,做事件的处理

二、信号驱动IO

异步IO方式,linux预留了一个信号SIGIO用于进行信号驱动IO,当硬件数据准备就绪后会发起一个硬件中断,在中断的处理函数中向当前进程发送一个SIGIO信号。进程收到SIGIO信号后执行信号处理函数,在信号处理函数中将数据读走即可。

1.实现过程及API

应用程序:

1)打开设备文件

2)注册信号的信号处理函数--signal(SIGIO,信号处理函数)

3)回调驱动中的fasync方法,完成发送信号之前的准备工作

        a.获取文件描述符属性

                int flags=fcntl(fd,F_GETFL);

        b.在文件描述符表的flags中添加FASYNC

                fcntl(fd,F_SETFL,flags|FASYNC);

        c.设置fd对应的驱动程序发送SIGIO信号只发送给当前进程

                fcntl(fd,F_SETOWN,getpid());

4)注意:不能让主程序结束

驱动程序:

1)定义一个异步对象指针

        struct fasync_struct *fp;

2)异步操作方法

int mycdev_fasync(int fd, struct file *file, int on) // 异步操作方法

{

        // 完成发送信号之前的准备工作

        fasync_helper(fd, file, on, &fp);

        return 0;

}

需要在操作方法结构体对象中加     .fasync = mycdev_fasync,

3)向进程发送信号

参数: fp:异步对象的二级指针

            sig:要发生的信号 SIGIO

            band:发送信号时添加的事件标志          POLL_IN表述读数据操作

//发送信号

kill_fasync(&fp,SIGIO,POLL_IN);

三、设备树

1.概念

1)设备树(DeviceTree/DT/of)是用来保存设备信息的一种树形结构

2)设备树的源码是独立于linux内核源码存在的

3)设备树上的设备信息在内核启动后被内核解析,加载到内核空间

4)设备树上的节点(包含属性子节点保存设备的设备信息;设备的信息由多个属性(链表形式存在,属性是键值对共同描述.

2.引入设备树的原因

        为了让驱动可以兼容更多硬件,不在驱动中指定设备信息,让驱动中获取设备树上的设备信息,基于这些设备信息完成硬件的控制

设备树linux官方手册:Device Tree Usage - eLinux.org

3.设备树节点结构体struct device_node和属性结构体 struct property

4.设备树节点解析API

1)根据设备树节点的名字解析指定的设备树节点信息

struct device_node *dnode;

dnode=of_find_node_by_name(NULL(默认从根节点解析),"mynode");

返回值:成功返回目标节点首地址,失败返回NULL

测试:

printk("name=%s,value=%s\n",dnode->properties->name,(char *)dnode->properties->value);

2)根据设备树节点路径解析设备树节点信息

3)根据节点的厂商信息解析指定的节点

dnode=of_find_compatible_node(NULL(默认从根节点解析),NULL(设备类型),:compatible值);

4)将大端字节序32位的数据转换成主机字节序

__u32 __be32_to_cpup(const __be32 *p)

printk("name=%s,value=%x %x\n",dnode->properties->next->next->name,

        __be32_to_cpup((u32 *)dnode->properties->next->next->value),

        __be32_to_cpup((u32 *)dnode->properties->next->next->value+1));

5.属性解析API

返回值:成功返回属性对象指针,失败返回NULL

struct property *pr;

int len;

pr=of_find_property(dnode,"uint",&len);

测试:

printk("name=%s value=%x %x\n",pr->name,__be32_to_cpup((u32 *)pr->value),

        __be32_to_cpup((u32 *)pr->value+1)); 

epoll实现IO多路复用的应用程序:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/epoll.h>
/* According to earlier standards */
#include <sys/time.h>int main(int argc, char const *argv[])
{int fd1, fd2, epfd;struct epoll_event event;      // 用于操作epollstruct epoll_event events[10]; // 存放就绪事件描述符的数组char buf[128] = {0};// 创建epoll句柄epfd = epoll_create(1);if (epfd < 0){printf("epoll_create filed\n");exit(-1);}// 打开设备文件fd1 = open("/dev/input/mouse0", O_RDWR);if (fd1 < 0){printf("打开鼠标设备文件失败\n");exit(-1);}fd2 = open("/dev/mycdev0", O_RDWR);if (fd2 < 0){printf("打开鼠标设备文件失败\n");exit(-1);}// 添加准备就绪事件进入epoll;event.events = EPOLLIN; // 读事件event.data.fd = fd1;if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd1, &event) < 0){printf("epoll_ctl add filed\n");}event.events = EPOLLIN; // 读事件event.data.fd = fd2;if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd2, &event) < 0){printf("epoll_ctl add filed\n");}// 监听事件是否发生while (1){// 如果成功,ret接收返回的事件个数,把就绪的事件放在events数组中int ret = epoll_wait(epfd, events, 10, -1);if (ret < 0){printf("epoll_wait filed\n");exit(-1);}int i;// 循环遍历数组,做事件的处理for (i = 0; i < ret; i++){if (events[i].events & EPOLLIN)//判断发生的事件是不是读事件{read(events[i].data.fd, buf, sizeof(buf));printf("buf:%s\n", buf);}}}close(fd1);close(fd2);return 0;
}

信号驱动IO:

proc1.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/epoll.h>
/* According to earlier standards */
#include <sys/time.h>
int fd; // 存放就绪事件描述符的数组
char buf[128] = {0};
// 定义信号处理函数
void sigio_handler(int sig)
{read(fd, buf, sizeof(buf));printf("buf:%s\n", buf);
}
int main(int argc, char const *argv[])
{// 打开设备文件fd = open("/dev/myled0", O_RDWR);if (fd < 0){printf("打开设备文件失败\n");exit(-1);}// 注册SIGIO信号的信号处理函数signal(SIGIO, sigio_handler);// 回调驱动中的fasync方法,完成发送信号之前的准备工作int flags = fcntl(fd,F_GETFL);     // 获取文件描述符属性fcntl(fd,F_SETFL,flags|FASYNC); // 在文件描述符表的flags中添加FASYNC,就可以回调fasync方法fcntl(fd,F_SETOWN,getpid());//驱动发送信号只发送给当前进程while(1){printf("aaaaa\n");sleep(1);}close(fd);return 0;
}

proc2.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>int main(int argc, char const *argv[])
{char buf[128] = "hello world";int fd = open("/dev/myled0", O_RDWR);if (fd < 0){printf("打开设备文件失败\n");exit(-1);}write(fd, buf, sizeof(buf));close(fd);return 0;
}

fasync.c

#include <linux/init.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/poll.h>
struct cdev *cdev;
char kbuf[128] = {0};
unsigned int major = 0;
unsigned int minor = 0;
dev_t devno;
module_param(major, uint, 0664); // 方便在命令行传递major的值
struct class *cls;
struct device *dev;
struct fasync_struct *fp; // 定义一个异步对象指针// 封装操作方法
int mycdev_open(struct inode *inode, struct file *file)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}
ssize_t mycdev_read(struct file *file, char *ubuf, size_t size, loff_t *lof)
{int ret;// 判断IO方式if (file->f_flags & O_NONBLOCK) // 非阻塞{}else // 阻塞{}ret = copy_to_user(ubuf, kbuf, size);if (ret){printk("copy_to_user err\n");return -EIO;}return 0;
}
ssize_t mycdev_write(struct file *file, const char *ubuf, size_t size, loff_t *lof)
{int ret;// 从用户拷贝数据,模拟硬件数据ret = copy_from_user(kbuf, ubuf, size);if (ret){printk("copy_from_user err\n");return -EIO;}//发送信号(异步对象二级指针,要发生的信号,发送信号时添加事件的标志位)kill_fasync(&fp,SIGIO,POLL_IN);return 0;
}int mycdev_fasync(int fd, struct file *file, int on) // 异步操作方法
{// 完成发送信号之前的准备工作fasync_helper(fd, file, on, &fp);return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}
// 定义一个操作方法结构体对象并且初始化
struct file_operations fops = {.open = mycdev_open,.read = mycdev_read,.write = mycdev_write,.fasync = mycdev_fasync,.release = mycdev_close,
};
static int __init mycdev_init(void)
{int ret;// 为字符设备驱动对象申请空间cdev = cdev_alloc();if (cdev == NULL){printk("字符设备驱动对象申请空间失败\n");ret = -EFAULT;goto out1;}printk("申请对象空间成功\n");// 初始化字符设备驱动对象cdev_init(cdev, &fops);// 申请设备号if (major > 0) // 静态指定设备号{ret = register_chrdev_region(MKDEV(major, minor), 3, "myled");if (ret){printk("静态申请设备号失败\n");goto out2;}}else if (major == 0) // 动态申请设备号{ret = alloc_chrdev_region(&devno, minor, 3, "myled");if (ret){printk("动态申请设备号失败\n");goto out2;}major = MAJOR(devno); // 获取主设备号minor = MINOR(devno); // 获取次设备号}printk("申请设备号成功\n");// 注册字符设备驱动对象ret = cdev_add(cdev, MKDEV(major, minor), 3);if (ret){printk("注册字符设备驱动对象失败\n");goto out3;}printk("注册字符设备驱动对象成功\n");// 向上提交目录信息cls = class_create(THIS_MODULE, "myled");if (IS_ERR(cls)){printk("向上提交目录失败\n");ret = -PTR_ERR(cls);goto out4;}printk("向上提交目录成功\n");// 向上提交设备节点信息int i;for (i = 0; i < 3; i++){dev = device_create(cls, NULL, MKDEV(major, i), NULL, "myled%d", i);if (IS_ERR(dev)){printk("向上提交设备节点信息失败\n");ret = -PTR_ERR(dev);goto out5;}}printk("向上提交设备信息成功\n");return 0;
out5:// 释放前一次提交成功的设备信息for (--i; i >= 0; i--){device_destroy(cls, MKDEV(major, i));}class_destroy(cls); // 释放目录
out4:cdev_del(cdev);
out3:unregister_chrdev_region(MKDEV(major, minor), 3);
out2:kfree(cdev);
out1:return ret;
}
static void __exit mycdev_exit(void)
{// 释放节点信息int i;for (i = 0; i < 3; i++){device_destroy(cls, MKDEV(major, i));}// 销毁目录class_destroy(cls);// 注销驱动对象cdev_del(cdev);// 释放设备号unregister_chrdev_region(MKDEV(major, minor), 3);// 释放对象空间kfree(cdev);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");

相关文章:

linux驱动开发day6--(epoll实现IO多路复用、信号驱动IO、设备树以及节点和属性解析相关API使用)

一、IO多路复用--epoll实现 1.核心&#xff1a; 红黑树、一张表以及三个接口、 2.实现过程及API 1&#xff09;创建epoll句柄/创建红黑树根节点 int epfdepoll_create(int size--无意义&#xff0c;>0即可)----------成功&#xff1a;返回根节点对应文件描述符&#xf…...

9月15日作业

Qt代码 #include "mywnd.h"//构造函数的定义 mywnd::mywnd(QWidget *parent): QWidget(parent) //显性调用父类的有参构造完成对子类从父类继承下来成员的初始化工作 {//窗口设置this->resize(QSize(500, 433));this->setWindowTitle("Widget&quo…...

关于Java多线程的那些事

多线程 多线程1. 关于多线程的理解1.1 进程和线程1.2 并行和并发1.3 线程调度 2. 创建多线程的方式创建线程有哪几种方式&#xff1f;2.1 通过继承Thread类来创建并启动线程的步骤如下&#xff1a;2.2 通过实现Runnable接口来创建并启动线程的步骤如下&#xff1a;2.3 通过实现…...

信息化项目验收的依据、内容和验收测评报告

随着信息系统业务覆盖率的提高和深度整合创新的逐步提高&#xff0c;信息系统运行阶段的复杂性和资源比例逐渐增加。一方面&#xff0c;信息已成为业务创新、技术应用和运营服务的综合体&#xff0c;而不仅仅是技术平台建设。另一方面&#xff0c;信息采购是技术平台建设。另一…...

解决IntelliJ IDEA执行maven打包,执行java -jar命令提示jar中没有主清单属性

问题场景 IDEA执行mvn clean package -DskipTesttrue命令或者借助工具的Maven菜单进行打包操作&#xff0c;然后执行java -jar app.jar命令后&#xff0c;提示jar中没有主清单属性 D:\WorkSpace\demo\target>java -jar demo-SNAPSHOT.jar demo-SNAPSHOT.jar中没有主清单属性…...

Python--文件和异常

目录 1、读取文件 1.1 读取文件的全部内容 1.2 相对路径和绝对路径 1.3 访问文件中的各行 1.4 使用文件中的内容 1.5 包含100万位的大型文件 1.6 圆周率中的生日 2、写入文件 2.1 写入一行 2.2 写入多行 3、异常 3.1 处理ZeroDivisionError 异常 3.2 使用try-exce…...

IDEFICS 简介: 最先进视觉语言模型的开源复现

我们很高兴发布 IDEFICS ( Image-aware Decoder Enhanced la Flamingo with Ininterleaved Cross-attention S ) 这一开放视觉语言模型。IDEFICS 基于 Flamingo&#xff0c;Flamingo 作为最先进的视觉语言模型&#xff0c;最初由 DeepMind 开发&#xff0c;但目前尚未公开发布…...

玩转Mysql系列 - 第20篇:异常捕获及处理详解

这是Mysql系列第20篇。 环境&#xff1a;mysql5.7.25&#xff0c;cmd命令中进行演示。 代码中被[]包含的表示可选&#xff0c;|符号分开的表示可选其一。 需求背景 我们在写存储过程的时候&#xff0c;可能会出现下列一些情况&#xff1a; 插入的数据违反唯一约束&#xff…...

一些工具类

1、字符串处理工具类 1.1、StrUtils package com.study.java8.util;/*** Classname&#xff1a;StrUtils* Description&#xff1a;字符串工具类* Date&#xff1a;2023/9/9 9:37* Author&#xff1a;jsz15*/import org.apache.commons.lang.text.StrBuilder; import org.apa…...

20230916后台面经整理

1.面对抢优惠券这样的高负载场景&#xff0c;你从架构、负载均衡等方面说一下你的设计&#xff1f; 答了参考Nginx进行负载均衡&#xff0c;然后在每台服务器怎么怎么弄&#xff08;架构每一层怎么设计&#xff09; 参考https://toutiao.io/posts/6z3uu2m/preview&#xff0c;h…...

如何通过快解析测试接口内外网?本地内网ip让外网访问连接

接口调试测试是网络技术员经常工作内容之一。如在公司内部api项目webserver测试&#xff0c;在公司内办公室个人电脑是正常用内网IP访问连接测试的&#xff0c;但在外网电脑需要远程测试时需要怎么测试呢&#xff1f;这里提供一种内网地址让外网访问的通用方法&#xff1a;快解…...

用c++实现五子棋小游戏

五子棋是一款经典小游戏&#xff0c;今天我们就用c实现简单的五子棋小游戏 目录 用到的算法&#xff1a; 思路分析 定义变量 开始写代码 完整代码 结果图&#xff1a; 用到的算法&#xff1a; 合法移动的判断&#xff1a;isValidMove 函数通过检查指定位置是否在棋盘范…...

Android 12.0 SystemUI下拉状态栏定制化之隐藏下拉通知栏布局功能实现(二)

1.前言 在12.0的系统定制化开发中,由于从12.0开始SystemUI下拉状态栏和11.0的变化比较大,所以可以说需要从新分析相关的SystemUI的 布局,然后做分析来实现不同的功能,今天就开始实现关于隐藏SystemUI下拉状态栏中的通知栏布局系列二,去掉下拉状态栏中 通知栏部分 白色的…...

通过finalshell快速在ubuntu上安装jdk1.8

这篇文章主要介绍一下怎么通过finalshell连接ubuntu&#xff0c;然后在ubuntu上安装jdk1.8&#xff0c;让不熟悉linux操作系统的童鞋也能快速地完成安装。 目录 一、准备一台虚拟机 二、安装finalshell远程连接工具 三、获取ubuntu虚拟机的ip地址 四、通过finalshell连接u…...

【Linux从入门到精通】多线程 | 线程互斥(互斥锁)

上篇文章我们对线程 | 线程介绍&线程控制介绍后&#xff0c;本篇文章将会对多线程中的线程互斥与互斥锁的概念进行详解。同时结合实际例子解释了可重入与不被重入函数、临界资源与临界区和原子性的概念。希望本篇文章会对你有所帮助。 文章目录 引入 一、重入与临界 1、1 可…...

Echarts 散点图的详细配置过程

文章目录 散点图 简介配置步骤简易示例 散点图 简介 Echarts散点图是一种常用的数据可视化图表类型&#xff0c;用于展示两个或多个维度的数据分布情况。散点图通过在坐标系中绘制数据点的位置来表示数据的关系。 Echarts散点图的特点如下&#xff1a; 二维数据展示&#xff…...

Nginx详解 五:反向代理

文章目录 1. 正向代理和反向代理1.1 正向代理概述1.1.1 什么是正向代理1.1.2 正向代理的作用1.1.3 正向代理的基本格式 1.2 反向代理概述1.2.1 什么是反向代理1.2.2 反向代理可实现的功能1.2.3 反向代理的可用模块 2. 配置反向代理2.1 反向代理配置参数2.1.1 proxy_pass2.1.2 其…...

【PDF密码】PDF文件打开之后不能打印,怎么解决?

正常的PDF文件是可以打印的&#xff0c;如果PDF文件打开之后发现文件不能打印&#xff0c;我们需要先查看一下自己的打印机是否能够正常运行&#xff0c;如果打印机是正常的&#xff0c;我们再查看一下&#xff0c;文件中的打印功能按钮是否是灰色的状态。 如果PDF中的大多数功…...

深入解析 qsort 函数(下),用冒泡排序模拟实现 qsort 函数

前言&#xff1a;对于库函数有适当了解的朋友们&#xff0c;对于 qsort 函数想必是有认知的&#xff0c;因为他可以对任意数据类型进行排序的功能属实是有点厉害的&#xff0c;本次分享&#xff0c;笔者就给大家带来 qsort 函数的全面的解读 本次知识的分享笔者分为上下俩卷文章…...

Azure + React + ASP.NET Core 项目笔记一:项目环境搭建(二)

有意义的标题 pnpm 安装umi4 脚手架搭建打包语句变更Visual Studio调试Azure 设置变更发布 pnpm 安装 参考官网&#xff0c;或者直接使用npm安装 npm install -g pnpmumi4 脚手架搭建 我这里用的umi4&#xff0c;官网已附上 这里需要把clientapp清空&#xff0c;之后 cd Cl…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...