当前位置: 首页 > news >正文

层次聚类分析

1、python语言

from scipy.cluster import hierarchy # 导入层次聚类算法
import matplotlib.pylab as plt
import numpy as np# 生成示例数据
np.random.seed(0)
data = np.random.random((20,1))# 使用树状图找到最佳聚类数
Z = hierarchy.linkage(data,method='weighted',metric='euclidean')
re = hierarchy.dendrogram(Z,color_threshold=0.2,above_threshold_color='#bcbddc')# 输出节点标签
print(re["ivl"])# 画图
plt.title('Dendrogram') # 标题
plt.xlabel('Customers') # 横标签
plt.ylabel('Euclidean distances') # 纵标签
plt.show()

dendrogram函数参数:

Z:层次聚类的结果,即通过scipy.cluster.hierarchy.linkage()函数计算得到的链接矩阵。
p:要显示的截取高度(y轴的阈值),可以用于确定划分群集的横线位置。
truncate_mode:指定截取模式。默认为None,表示不截取,可以选择 'lastp' 或 'mlab' 来截取显示。
labels:数据点的标签,以列表形式提供。
leaf_font_size:叶节点的字体大小。
leaf_rotation:叶节点的旋转角度。
show_leaf_counts:是否显示叶节点的数量。
show_contracted:是否显示合并的群集。
color_threshold:显示不同颜色的阈值,用于将不同群集算法聚类为不同颜色。
above_threshold_color:超过阈值的线段颜色。
orientation:图形的方向,可以选择 'top'、'bottom'、'left' 或 'right'。

假设我们输出Z值,获得以下结果:

from scipy.cluster import hierarchy # 导入层次聚类算法
import numpy as np
import pandas as pd# 生成示例数据
np.random.seed(0)
data = np.random.random((8,1))# 使用树状图找到最佳聚类数
Z = hierarchy.linkage(data,method='weighted',metric='euclidean')
row_dist_linkage = pd.DataFrame(Z,columns=['Row Label 1','Row Label 2','Distance','Item Number in Cluster'],index=['Cluster %d' % (i+1) for i in range(Z.shape[0])])
print("\nData Distance via Linkage: \n",row_dist_linkage)

其中,第一列和第二列代表节点标签,包含叶子和枝子;第三列代表叶叶(或叶枝,枝枝)之间的距离;第四列代表该层次类中含有的样本数(记录数)。注:因此,我们可以第三列距离结合图来确定不同簇的样本数量。这里的数量为(n-1),即样本总数减1。

2、R语言

setwd("D:/Desktop/0000/R") #更改路径df <- read.csv("iris.csv",header = T, row.names = 1) #读取工作路径文件
head(df) #查看前6行
hc <- hclust(dist(df))library(ggtree)ggtree(hc,layout="circular",branch.length = "daylight")+xlim(NA,3)+geom_tiplab2(offset=0.1,size=2)+#geom_text(aes(label=node))+geom_highlight(node = 152,fill="red")+geom_highlight(node=154,fill="steelblue")+geom_highlight(node=155,fill="green")+geom_cladelabel(node=152,label="virginica",offset=1.2,barsize = 2,vjust=-0.5,color="red")+geom_cladelabel(node=154,label="versicolor",offset=1.2,barsize = 2,hjust=1.2,color="steelblue")+geom_cladelabel(node=155,label="setosa",offset=1.2,barsize = 2,hjust=-1,color="green")

如果没有安装ggtree则先安装

install.packages("BiocManager")
BiocManager::install('ggtree')

除了上面这种方式外,我们还可以使用下面的方式获取(节点对齐):

setwd("D:/Desktop/0000/R") #更改路径
library(dendextend) #install.packages("dendextend")
library(circlize) #install.packages("circlize")df <- read.csv("iris.csv",header = T, row.names = 1) #读取工作路径文件
head(df) #查看前6行
aa <- hclust(dist(df))# 设置画布大小为4英寸宽,4英寸高
par(mar = c(4, 4, 2, 2) + 0.1)
png("output.png", width = 4, height = 4, units = "in", res = 600)hc <- as.dendrogram(aa) %>%set("branches_lwd", c(1.5)) %>% # 线条粗细set("labels_cex", c(.9)) # 字体大小# 颜色
hc <- hc %>%color_branches(k = 10) %>%  #树状分支线条颜色color_labels(k = 10)         #文字标签颜色# Fan tree plot with colored labels
circlize_dendrogram(hc,labels_track_height = NA,dend_track_height = 0.7)
# 结束绘图并关闭设备
dev.off()

文件数据样式:

更多学习视频:【R包使用】ggtree美化树状图_哔哩哔哩_bilibili、树状图展示聚类分析的结果_哔哩哔哩_bilibili

相关文章:

层次聚类分析

1、python语言 from scipy.cluster import hierarchy # 导入层次聚类算法 import matplotlib.pylab as plt import numpy as np# 生成示例数据 np.random.seed(0) data np.random.random((20,1))# 使用树状图找到最佳聚类数 Z hierarchy.linkage(data,methodweighted,metric…...

Jmeter性能实战之分布式压测

分布式执行原理 1、JMeter分布式测试时&#xff0c;选择其中一台作为调度机(master)&#xff0c;其它机器作为执行机(slave)。 2、执行时&#xff0c;master会把脚本发送到每台slave上&#xff0c;slave 拿到脚本后就开始执行&#xff0c;slave执行时不需要启动GUI&#xff0…...

学信息系统项目管理师第4版系列08_管理科学基础

1. 科学管理的实质 1.1. 反对凭经验、直觉、主观判断进行管理 1.2. 主张用最好的方法、最少的时间和支出&#xff0c;达到最高的工作效率和最大的效果 2. 资金的时间价值与等值计算 2.1. 资金的时间价值是指不同时间发生的等额资金在价值上的差别 2.2. 把资金存入银行&…...

从2023蓝帽杯0解题heapSpary入门堆喷

关于堆喷 堆喷射&#xff08;Heap Spraying&#xff09;是一种计算机安全攻击技术&#xff0c;它旨在在进程的堆中创建多个包含恶意负载的内存块。这种技术允许攻击者避免需要知道负载确切的内存地址&#xff0c;因为通过广泛地“喷射”堆&#xff0c;攻击者可以提高恶意负载被…...

基于SSM的学生宿舍管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

jvm 内存模型介绍

一、类加载子系统 1、类加载的过程&#xff1a;装载、链接、初始化&#xff0c;其中&#xff0c;链接又分为验证、准备和解析 装载&#xff1a;加载class文件 验证&#xff1a;确保字节流中包含信息符合当前虚拟机要求 准备&#xff1a;分配内存&#xff0c;设置初始值 解析&a…...

用Jmeter进行压测详解

简介&#xff1a; 1.概述 一款工具&#xff0c;功能往往是很多的&#xff0c;细枝末节的地方也很多&#xff0c;实际的测试工作中&#xff0c;绝大多数场景会用到的也就是一些核心功能&#xff0c;根本不需要我们事无巨细的去掌握工具的所有功能。所以本文将用带价最小的方式讲…...

Mysql001:(库和表)操作SQL语句

目录&#xff1a; 》SQL通用规则说明 SQL分类&#xff1a; 》DDL&#xff08;数据定义&#xff1a;用于操作数据库、表、字段&#xff09; 》DML&#xff08;数据编辑&#xff1a;用于对表中的数据进行增删改&#xff09; 》DQL&#xff08;数据查询&#xff1a;用于对表中的数…...

甲骨文全区登录地址

日本东部 东京 https://console.ap-tokyo-1.oraclecloud.com https://console.ap-tokyo-1.oraclecloud.com 日本中部 大阪 https://console.ap-osaka-1.oraclecloud.com https://console.ap-osaka-1.oraclecloud.com 韩国中部 首尔 https://console.ap-seoul-1.oraclecloud.c…...

Java面试题第八天

一、Java面试题第八天 1.如何实现对象克隆&#xff1f; 浅克隆 浅克隆就是我们可以通过实现Cloneable接口&#xff0c;重写clone,这种方式就叫浅克隆&#xff0c;浅克隆 引用类型的属性&#xff0c;是指向同一个内存地址&#xff0c;但是如果引用类型的属性也进行浅克隆就是深…...

什么是同步容器和并发容器的实现?

同步容器和并发容器都是用于在多线程环境中管理数据的容器&#xff0c;但它们在实现和用法上有很大的区别。 同步容器&#xff1a; 同步容器是使用传统的同步机制&#xff08;如synchronized关键字或锁&#xff09;来保护容器内部数据结构的线程安全容器。同步容器通常是单线…...

学Python的漫画漫步进阶 -- 第十六步

学Python的漫画漫步进阶 -- 第十六步 十六、多线程16.1 线程相关的知识16.1.1 进程16.1.2 线程16.1.3 主线程 16.2 线程模块——threading16.3 创建子线程16.3.1 自定义函数实现线程体16.3.2 自定义线程类实现线程体 16.4 线程管理16.4.1 等待线程结束16.4.2 线程停止 16.5 动动…...

MySQL 8.0 OCP (1Z0-908) 考点精析-架构考点5:数据字典(Data Dictionary)

文章目录 MySQL 8.0 OCP (1Z0-908) 考点精析-架构考点5&#xff1a;数据字典(Data Dictionary)File-based Metadata Storage &#xff08;基于文件的元数据存储&#xff09;Transactional Data Dictionary &#xff08;事务数据字典&#xff09;Serialized Dictionary Informat…...

7分钟了解ChatGPT是如何运作的

ChatGPT是现在最为热门的聊天助手应用&#xff0c;它使用了一个大型语言模型(LLM)&#xff0c;即GPT-3.5。它通过大量的文本数据进行训练&#xff0c;以理解和生成人类语言。但是&#xff0c;你是否有了解过ChatGPT是如何运作的吗&#xff1f; 下面我们就一起通过这个视频来一起…...

蓝桥杯打卡Day8

文章目录 C翻转矩阵幂 一、C翻转IO链接 本题思路:本题需要找出顺时针旋转和逆时针旋转的规律&#xff0c;然后就可以解决该问题。 矩阵顺时针90旋转规律:列号变为行号&#xff0c;(n-行号-1)变为列号 规律:a[i][j]b[j][n-i1]; 矩阵逆时针90旋转规律:行号变为列号&#xff0…...

React 学习笔记目录

学习使用的开发工具 编译器 VSCode 开发语言工具 TypeScript /JavaScript 重要程度分类 一般 这个程度的知识点主要是达到熟练掌握即可&#xff0c;不用太深入研究和学习。 重要 这个程度的知识点主要是达到熟练掌握&#xff0c;并且内部的原理切要熟记&#xff0c;因为会关…...

一起Talk Android吧(第五百五十一回:如何自定义SplashScreen)

文章目录 概念介绍实现方法修改启动页中的内容修改启动页显示时间修改启动面消失时的页面各位看官们大家好,上一回中咱们说的例子是"如何适配SplashScreen",本章回中介绍的例子是" 如何自定义SplashScreen"。闲话休提,言归正转,让我们一起Talk Android…...

PYTHON-模拟练习题目集合

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

UE5学习笔记(1)——从源码开始编译安装UE5

目录 0. 前期准备1. Git bash here2. 克隆官方源码。3. 选择安装分支4. 运行Setup.bat&#xff0c;下载依赖文件5. 运行GenerateProjectFiles.bat生成工程文件6. 生成完成&#xff0c;找到UE5.sln/UE4.sln7. 大功告成 0. 前期准备 0.1 在windows的话&#xff0c;建议装一个Git…...

DP读书:《openEuler操作系统》(二)操作系统的发展史

操作系统的发展历史 操作系统的发展历史手工操作时代批处理系统多道程序系统分时操作系统CTSSMULTICS的历史UNIX和Linux的历史Debian系列Red Hat系列 DOS和Windows的历史DOS的历史&#xff1a;Windows的历史&#xff1a; Android和iOS的历史Android&#xff1a;iOS&#xff1a;…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...