当前位置: 首页 > news >正文

Python傅立叶变换

1. 什么是傅里叶变换?

在数学中,变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术,它可以将函数从时域空间转换到频域空间。例如以音频波为例,傅里叶变换可以根据其音符的音量和频率来表示它。

我们可以说,任何函数的傅里叶变换所执行的变换都是频率的函数。其中结果函数的大小是原始函数所包含的频率的表示。

让我们举一个信号的例子,它的时域函数如下所示:

Image

在同一时间范围内获取另一个信号的一部分

Image

将这两个信号的称为 A(n) 和 B(n),其中 n 是时域。因此,如果我们添加这些信号,信号的结构将如下所示:

C(n) = A(n) + B(n)

Image

可以看到,函数的信号相加是将两个信号进行了加的操作,如果我们试图从这个相加信号 C 中提取信号 A 或 B,我们会遇到一个问题,因为 这些信号只是功率相加,和时间没有关系。也就是说相加的操作是同一时间上的功率的相加。

Image

可以在上图中看到,频域可以很容易地突出信号之间的差异。如果希望将这些信号转换回时域,我们可以使用傅里叶逆变换。

2. numpy.fft与scipy.fft

Python的numpy和scipy模块提供了数学中所需的所有转换技术,所以可以直接使用它。

下面的例子都是用的scipy,但是实际使用中如果能不用scipy尽量不用,毕竟少用一个库就少一些部署上的麻烦。

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

制作正弦波

# sample points
N = 1200# sample spacing
T = 1.0 / 1600.0x = np.linspace(0.0, N*T, N, endpoint=False)
sum = np.sin(50.0 * 2.0 * np.pi*x) + 0.5*np.sin(80.0 * 2.0 * np.pi*x)plt.plot(sum)
plt.title('Sine wave')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid(True, which='both')
plt.show()

Image

上面的输出中,可以看到使用 NumPy 生成的正弦波,现在可以使用 scipy 库的 FFT 模块对其进行转换。

sumf = fft(sum)
xf = fftfreq(N, T)[:N//2]
plt.ylabel('frequency')
plt.xlabel('sample')
plt.title("FFT of sum of two sines")
plt.plot(xf, 2.0/N * np.abs(sumf[0:N//2]))
plt.show()

fft输出的结果是复数,其中实部表示频率,虚部表示相机,如果只关心频率,取绝对值即可。 

Image

现在可以清楚地看到各种波的频率是多少,作为时域的函数形成的时这些并不明显,只有在频域表示时才能清楚的看到这些区别。

参考文献

主要内容来自下文,内容略有增加

神经网络与傅立叶变换有何关系?

相关文章:

Python傅立叶变换

1. 什么是傅里叶变换? 在数学中,变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术,它可以将函数从时域空间转换到频域空间。例如以音频波为例,傅里叶变换可以根据其音符的音量和频率来表示…...

MATLAB向量化编程基础精讲教程

向量化编程是MATLAB中一种重要的编程技术,通过使用向量和矩阵运算代替循环,可以提高代码的执行效率和可读性。本文将介绍MATLAB向量化编程的基础知识,并提供多个案例代码,帮助读者理解和应用向量化编程。 一、向量化编程基础知识…...

【非对称加密算法】RSA算法

一、非对称加密算法 非对称加密算法使用了两个不同的密钥:公钥和私钥。公钥是公开的,可以被任何人使用,而私钥是只有特定的人能够使用的。这种算法的加密和解密过程使用不同的密钥,因此称为非对称加密算法。 在非对称加密算法中…...

【滑动窗口】438. 找到字符串中所有字母异位词

438. 找到字符串中所有字母异位词 滑动窗口解法 创建两个Map 一个记录实际需要的有效字符 另一个记录窗口内的有效字符个数初始化need每次遍历一个字符 判断是不是有效字符 如果是 更新window 另外判断window中有效字符的个数是不是等于need中有效字符的个数 如果是更新valid…...

【PowerQuery】Excel 一分钟以内刷新PowerQuery数据

当需要进行刷新的周期如果小于一分钟,采用数据自动刷新就无法实现自动刷新的目标。那就没有办法了吗?当然不是,这里就是使用VBA来实现自动刷新。这里实现VBA刷新的第一步就是将当前的Excel 保存为带有宏的Excel 文件,如果不带宏则无法运行带有宏代码的Excel文件,保存过程如…...

【C语言】用冒泡排序实现my_qsort

大家好,我是苏貝,本篇博客带大家了解如何用冒泡排序实现my_qsort,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 一. 前言二. 冒泡排序三. 4个参数3.1 第一个参数void* base3.2 第二个参数…...

【css】深入理解flex属性

参考文章: 深入理解Flex属性 flex弹性布局教程-05-项目属性flex-shrink flex:flex-grow flex-shrink flex-basis flex:0 1 0 如何计算flex布局,有flex-shrink和flex-grow的情况下,每个元素的大小 flex-grow生效公式如…...

前端项目开发流程

一 参加需求对称(评审)会议 时间:在产品设计完成以后,进入正式的开发流程之前 组织者:产品&项目经理 目的:统一大家对产品的认识,及时发现产品设计缺陷,尽可能降低后续修改需求的频率 参与者&#xff…...

MybatisPlus逆向工程入门指南:让你的开发更高效、更简洁、更优雅

学会了,可以看看这篇文章:更新中~ 正向工程:先创建Java实体类,由框架负责根据实体类生成数据库表。Hibernate是支持正向工程的。 逆向工程:先创建数据库表,由框架负责根据数据库表,反向生成如下…...

通用商城项目(下)

记录一些踩坑的地方,以及理顺一些思路。 通过管理系统页面,完成商品属性分组和商品属性(基本属性)关联维护 属性表 与 属性组表 的功能完善:显示属性组与属性表的一对多关系 前端 1. 引入组件,是否显示使…...

k8s集群使用ingress转发grafana服务

文章目录 前言一、思路二、grafana准备1. grafana-configmap.yaml2. grafana.yaml 三、ingress准备1. ingress.yaml2. grafana-externalname.yaml3. ingress-nginx-controller 四、 本机host文件准备五、访问测试 前言 在k8s集群中,使用ingress服务转发grafana的页…...

MongoDB的备份和恢复

工具 mongodump 和 mongorestore是MongoDB自带的备份恢复工具。 参考文章 ## https://blog.csdn.net/GUDUzhongliang/article/details/131915625## https://blog.csdn.net/mingongge/article/details/130695422 备份 mongodump 参数 -h, --host<hostname> …...

Pytorch学习笔记(GPU训练)

GUP训练 配置pytorch的gup版本主要是在网络模型、输入和标记的数据、损失函数 方式一 直接.cuda()调用&#xff0c;在原有的模型训练代码中的网络模型、输入和标记的数据、损失函数部分直接调用即可 方式二 事先定义好设备device,然后直接.to(device)调用&#xff0c;在原…...

一款开源的shell脚本分析工具

大家好&#xff0c;今天分享一款开源工具--shellcheck。 shellcheck 简介 今天发现的一款神器&#xff0c;如果你日常会接触到shell脚本&#xff0c;或者说自己需要写一些shell脚本&#xff0c;那么强烈建议你用下这个工具。 shellcheck一个静态的shell脚本分析工具&#xf…...

HTML <video> 标签

实例 一段简单的 HTML5 视频: <video src="movie.ogg" controls="controls"> 您的浏览器不支持 video 标签。 </video>定义和用法 <video> 标签定义视频,比如电影片段或其他视频流。 浏览器支持 元素ChromeIEFirefoxSafariOpera&l…...

mac 本地运行 http-proxy-middleware ,请求超时

const http require(http)"/customer": {target: "http://10.10.111.192:8080/",// target: "http://user.jinfu.baohan.com/",changeOrigin: true, // 是否启用跨域// 解决mac 代理超时问题headers: {Connection: "keep-alive"},// …...

【Effective Python】读书笔记-05类与接口

1. 让组合起来的类来实现多层结构&#xff0c;不用使用嵌套的内置类型 2. 让简单的接口接收函数&#xff0c;而不是类的实例 from collections import defaultdictcurrent {a: 1,b: 2,c: 3, }add_to_current {f: 4,e: 5, }def increment():count 0def missing():nonlocal …...

【办公自动化】用Python在Excel中查找并替换数据(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

python学习随笔3

range的使用 range()在python很常用&#xff0c;可以进行初始化和遍历等。 # range(st,ed) # [st, ed)# range(st,ed,step) # range(st, ed, step) i,i step, i 2 * step ... () < ed切片 跟range类似。 ll[st:ed:step]容器 元组 python中的元组中内容不可以进行更…...

《TCP/IP网络编程》阅读笔记--epoll的使用

1--epoll的优点 select()的缺点&#xff1a; ① 调用 select() 函数后针对所有文件描述符的循环语句&#xff1b; ② 调用 select() 函数时需要向操作系统传递监视对象信息&#xff1b; epoll()的优点&#xff1a; ① 无需编写以监视状态变化为目的的针对所有文件描述符的循环语…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...