带你熟练使用list

🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨
🐻强烈推荐优质专栏: 🍔🍟🌯C++的世界(持续更新中)
🐻推荐专栏1: 🍔🍟🌯C语言初阶
🐻推荐专栏2: 🍔🍟🌯C语言进阶
🔑个人信条: 🌵知行合一
🍉本篇简介:>:讲解C++中STL中list简单使用.
目录
- 前言
- 一、构造函数:
- (1) 无参构造
- (2) 用n个val构造
- (3) 迭代器区间构造
- (4) 拷贝构造
- 二、访问数据
- (1) 迭代器
- (2) Element access:
- 三、修改(重点)
- (1) 头插/删 && 尾插/删
- (2) insert && erase
- 🍔insert
- 🍔erase
- (3) 迭代器失效问题
前言
官方查询文档
本文的目的主要是介绍list的常用接口,从构造函数,访问数据,修改数据等接口函数介绍.帮助大家初步掌握list的使用,后续会分享list的模拟实现,从底层理解list更加深刻的理解list.
一、构造函数:

| 函数模型 | 表头 |
|---|---|
| explicit list(const allocator_type & alloc = allocator_type()); | 无参构造 |
| explicit list(size_type n, const value_type & val = value_type()) | n个val初始化 |
| list(InputIterator first, InputIterator last) | 迭代器区间初始化 |
| list(const list & x); | 拷贝构造 |
学习了string和vector这里就不过多介绍了.
(1) 无参构造
测试代码:
void test1()
{//无参构造 explicit list(const allocator_type & alloc = allocator_type());list<int> L1;cout << "L1=";for (auto it : L1){cout << it << " ";}cout << endl;
}
运行结果:
L1=
(2) 用n个val构造
//使用n个val构造 explicit list(size_type n, const value_type & val = value_type())list<int> L2(5,2);cout << "L2=";for (auto it : L2){cout << it << " ";}cout << endl;
运行结果:
L2=2 2 2 2 2
(3) 迭代器区间构造
//迭代器区间构造//template <class InputIterator>//list(InputIterator first, InputIterator last)int arr[] = { 1,2,3,4,5,6,7,8,9,10 };list<int> L3(arr, arr + 10);cout << "L3=";for (auto it : L3){cout << it << " ";}cout << endl;
运行结果:
L3=1 2 3 4 5 6 7 8 9 10
(4) 拷贝构造
//拷贝构造 list(const list & x);cout << "L4=";list<int> L4(L3);//上面的 L3=1 2 3 4 5 6 7 8 9 10for (auto it : L4){cout << it << " ";}cout << endl;
运行结果:
L4=1 2 3 4 5 6 7 8 9 10
二、访问数据
(1) 迭代器
| 接口名 | 含义 |
|---|---|
| begin() | 返回第一个有效元素位置的迭代器 |
| end() | 返回最后一个有效元素位置的迭代器 |
(2) Element access:
| 接口名 | 含义 |
|---|---|
| front() | 返回list的第一个有效结点中存储的值的引用 |
| back() | 返回list的最后一个有效节点中存储的值的引用 |
测试代码:
void test2()
{//测试迭代器list<int> L1;L1.push_back(1);L1.push_back(4);L1.push_back(6);L1.push_back(8);L1.push_back(12);L1.push_back(20);list<int>::iterator it = L1.begin();while (it != L1.end()){cout << *it << " ";++it;}cout << endl;//Element access:cout << "front()=" << L1.front() << endl; //返回list的第一个有效结点中存储的值的引用cout << "back()=" << L1.back() << endl; //返回list的最后一个有效节点中存储的值的引用
}
运行结果:
1 4 6 8 12 20
front()=1
back()=20
三、修改(重点)

| 接口名 | 解释 |
|---|---|
| push_front | 头插 |
| pop_front | 头删 |
| push_back | 尾插 |
| pop_back | 尾删 |
| insert | 在list中的 pos 位置中插入值为val的元素 |
| erase | 删除list 中的pos位置的元素 |
| swap | 交换两个list |
| clear | 清除list中的有效数据 |
(1) 头插/删 && 尾插/删
void test3()
{list<int> L1;L1.push_back(1);L1.push_back(3);L1.push_back(4);L1.push_back(5);L1.push_back(7);L1.push_back(9);for (auto it : L1){cout << it << " ";}cout << endl;//头插 L1.push_front(0);L1.push_front(-1);cout << "依次头插0 和-1后: ";for (auto it : L1){cout << it << " ";}cout << endl;//头删L1.pop_front();cout << "头删一次后: ";for (auto it : L1){cout << it << " ";}cout << endl;//尾删L1.pop_back();L1.pop_back();cout << "尾删两次后: ";for (auto it : L1){cout << it << " ";}cout << endl;
}
运行结果:
1 3 4 5 7 9
依次头插0 和-1后: -1 0 1 3 4 5 7 9
头删一次后: 0 1 3 4 5 7 9
尾删两次后: 0 1 3 4 5
(2) insert && erase
🍔insert

| 接口名 | 解释 |
|---|---|
| iterator insert (iterator position, const value_type& val); | 在pos位置插入值val |
| void insert (iterator position, size_type n, const value_type& val); | 在pos位置开始,插入n个val |
| void insert (iterator position, InputIterator first, InputIterator last); | 在pos位置插入,一个迭代器区间的值 |
由于list并不支持下标随机访问元素(" []"),所以,我们在使用迭代器的时候,避免使用
迭代器+ num
例如:L1.begin()+2
void test4()
{int arr[] = { 1,2,3,4,5,6,7,8 };list<int> L1(arr, arr + 8);for (auto it : L1) //1 2 3 4 5 6 7 8{cout << it << " ";}cout << endl;// insert//iterator insert (iterator position, const value_type& val);\//list的迭代器不支持直接+=num//L1.insert(L1.begin()+2 ,66); //报错auto it1 = L1.begin();++it1;++it1;L1.insert(it1, 66);for (auto it : L1) //1 2 66 3 4 5 6 7 8{cout << it << " ";}cout << endl;//void insert(iterator position, size_type n, const value_type & val);L1.insert(L1.begin(), 3, 0); //在第一个位置插入3个0for (auto it : L1) //0 0 0 1 2 66 3 4 5 6 7 8{cout << it << " ";}cout << endl;//template <class InputIterator>// void insert(iterator position, InputIterator first, InputIterator last);int arr2[] = { -1,-2,-3 };L1.insert(L1.begin(), arr2, arr2+3); //在第一个位置插入一段迭代器区间的值for (auto it : L1) //-1 -2 -3 0 0 0 1 2 66 3 4 5 6 7 8{cout << it << " ";}cout << endl;
}

🍔erase

| 接口名 | 解释 |
|---|---|
| iterator erase (iterator position); | 删除该迭代器位置的值 |
| iterator erase (iterator first, iterator last); | 删除迭代器区间中的值 |
测试代码:
void test5()
{int arr[] = { 1,2,3,4,5,6,7,8 };list<int> L1(arr, arr + 8);for (auto it : L1) //1 2 3 4 5 6 7 8{cout << it << " ";}cout << endl;//eraseauto it1 = L1.end(); //指向最后一个有效元素的下一个位置--it1; //指向最后一个有效元素的位置--it1; //指向倒数第二个有效元素的位置L1.erase(it1);for (auto it : L1) //1 2 3 4 5 6 8{cout << it << " ";}cout << endl;auto it2 = L1.begin();++it2;auto it3 = L1.end();--it3;L1.erase(it2,it3);for (auto it : L1) //1 8{cout << it << " ";}cout << endl;
}

(3) 迭代器失效问题
猜一猜这段代码的结果是什么?
void test6()
{int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> L1(arr, arr + 10);auto it = L1.begin();auto it2 = L1.end();--it2;while (it != it2){// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,it就失效了L1.erase(it);++it;}cout << endl;
}


解释:
迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,插入并不会导致扩容而产生迭代器失效问题,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
如下图:

那我该如何解决这个问题呢?

void test6()
{int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };list<int> L1(arr, arr+10);auto it = L1.begin();auto it2 =L1.end();--it2;while (it != it2){it=L1.erase(it);}for (auto it : L1) {cout << it << " ";}cout << endl;
}

下一篇,我们list模拟实现见吧!

相关文章:
带你熟练使用list
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...
排序——希尔排序
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、希尔排序二、希尔排序动态图三、希尔排序程序代码四、希尔排序习题总结 前言 希尔排序定义希尔排序算法分析希尔排序程序代码希尔排序练习题 一、希尔排序…...
为什么文件夹里的文件看不到?了解原因及应对措施
无论是在个人电脑中还是在其他存储介质上,我们经常会遇到文件夹中的文件突然不可见的情况。这种问题给我们的工作和生活带来了不便,并可能导致数据丢失。本文将分析文件夹中文件看不见的原因,并介绍相应的解决方法,以帮助大家更好…...
KVM嵌套虚拟化实现
KVM嵌套虚拟化实现 理论 Libvirt主要支持三种 CPU mode host-passthrough: libvirt 令 KVM 把宿主机的 CPU 指令集全部透传给虚拟机。因此虚拟机能够最大限度的使用宿主机 CPU 指令集,故性能是最好的。但是在热迁移时,它要求目的节点的 CPU 和源节点的…...
驱动开发,IO模型,信号驱动IO实现过程
1.信号驱动IO框架图 分析: 信号驱动IO是一种异步IO方式。linux预留了一个信号SIGIO用于进行信号驱动IO。进程主程序注册一个SIGIO信号的信号处理函数,当硬件数据准备就绪后会发起一个硬件中断,在中断的处理函数中向当前进程发送一个SIGIO信号…...
左神高级进阶班3(TreeMap顺序表记录线性数据的使用, 滑动窗口的使用,前缀和记录结构, 可能性的舍弃)
目录 【案例1】 【题目描述】 【思路解析】 【代码实现】 【案例2】 【题目描述】 【思路解析】 【代码实现】 【案例3】 【题目描述】 【思路解析】 【代码实现】 【案例4】 【题目描述】 【思路解析】 【代码实现】 【案例1】 【题目描述】 【思路解析】 这里…...
Linux线程
1.进程是资源管理的最小单位,线程是程序执行的最小单位。 2.每个进程有自己的数据段、代码段和堆栈段。线程通常叫做轻型的进程,它包含独立的栈和CPU寄存器状态,线程是进程的一条执行路径,每个线程共享其所附属进程的所有资源,包括…...
C++ 太卷,转 Java?
最近看到知乎、牛客等论坛上关于 C 很多帖子,比如: 2023年大量劝入C 2023年还建议走C方向吗? 看了一圈,基本上都是说 C 这个领域唯一共同点就是都使用 C 语言,其它几乎没有相关性。 的确是这样,比如量化交…...
《Java并发编程实战》第2章-线程安全性
0.概念理解 对象状态:存储在状态变量(例如实例或静态域)中的数据; 线程安全性:当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就称这个类是线程安全的; 竞态条件&…...
二蛋赠书三期:《C#入门经典(第9版)》
文章目录 前言活动规则参与方式本期赠送书籍介绍作者介绍内容简介读者对象获奖名单 结语 前言 大家好!我是二蛋,一个热爱技术、乐于分享的工程师。在过去的几年里,我一直通过各种渠道与大家分享技术知识和经验。我深知,每一位技术…...
Augmented Large Language Models with Parametric Knowledge Guiding
本文是LLM系列文章,针对《Augmented Large Language Models with Parametric Knowledge Guiding》的翻译。 参数知识引导下的增强大型语言模型 摘要1 引言2 相关工作3 LLM的参数化知识引导4 实验5 结论 摘要 大型语言模型(LLM)凭借其令人印…...
Docker启动Mysql容器并进行目录挂载
一、创建挂载目录 mkdir -p 当前层级下创建 mkdir -p mysql/data mkdir -p mysql/conf 进入到conf目录下创建配置文件touch hym.conf 并把配置文件hmy.conf下增加以下内容使用vim hym.conf即可添加(cv进去就行) Esc :wq 保存 [mysqld] skip-name-resolve character_set_…...
力扣刷题(简单篇):两数之和、两数相加、无重复字符的最长子串
坚持就是胜利 一、两数之和 题目链接:https://leetcode.cn/problems/two-sum/ 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应…...
Spark的基础
实训笔记--Spark的基础 Spark的基础一、Spark的诞生背景二、Spark概念2.1 Spark Core2.2. Spark SQL2.3 Spark Streaming2.4 Spark MLlib2.5 Spark GraphX2.6 Spark R 三、Spark的特点3.1 计算快速3.2 易用性3.3 兼容性3.4 通用性 四、Spark的安装部署4.1 Spark的安装部署就是安…...
如何在idea中新建第一个java小程序
如何在idea中新建第一个java小程序 1.打开软件2.新建项目3.找到安装的jdk文件路径4.继续下一步5.创建项目名称并配置项目路径6.点击完成即可。7.在项目文件的src文件夹下创建java类,程序等7.1其他java项目或文件不能运行的原因: 8.新建类并运行程序9.输入…...
AOP全局异常处理
AOP全局异常处理 由于Controller可能接收到来自业务层、数据层、数据库抛出的异常,因此需要使用AOP思想,进行全局异常处理,异常可通过调试获得。 package org.sinian.reggie.common;import lombok.extern.slf4j.Slf4j; import org.springfram…...
一阶低通滤波器滞后补偿算法
一阶低通滤波器的推导过程和双线性变换算法请查看下面文章链接: PLC算法系列之数字低通滤波器(离散化方法:双线性变换)_双线性离散化_RXXW_Dor的博客-CSDN博客PLC信号处理系列之一阶低通(RC)滤波器算法_RXXW_Dor的博客-CSDN博客_rc滤波电路的优缺点1、先看看RC滤波的优缺点…...
JS中Symbol的介绍
1、 引入Symbol类型的背景 ES5 的对象属性名都是字符串,这容易造成属性名冲突的问题 举例: 使用别人的模块/对象, 又想为之添加新的属性,这就容易使得新属性名与原有属性名冲突 2、Symbol类型简介 symbol是一种原始数据类型 其余原始类型: 未定义(undefined) 、…...
封装统一响应结果类和消息枚举类
在开发中,响应结果都需要统一格式,下面给出一个例子,可自行修改。 package com.lili.utils;import com.fasterxml.jackson.annotation.JsonInclude; import com.lili.enums.AppHttpCodeEnum;import java.io.Serializable;/*** author YLi_Ji…...
应广单片机实现红蓝双色爆闪灯
继续进行点灯,今天来点简单的,红蓝双色爆闪灯,上电即可爆闪,红色接pa.3.pa.4,蓝色接pa6.和pa.7,低电平点亮LED灯,想要高电平点亮,或是驱动N管点亮灯,可以稍作修改。端口电平输出0改1,…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
