当前位置: 首页 > news >正文

基于CNN-LSTM的时序预测MATLAB实战

   一、算法原理

1.1 CNN原理 

    卷积神经网络具有局部连接、权值共享和空间相关等特性。卷积神经网络结构包含卷积层、激活层和池化层。

    (a)二维卷积层将滑动卷积滤波器应用于输入。该层通过沿输入垂直和水平方向 移动滤波器对输入进行卷积,并计算权重与输入的点积,然后加入一个偏置项。具体表达式为:

    卷积层的功能是对输入数据进行特征提取。其内部包含多个卷积核,也称为 感受野。将输入图像和卷积核做卷积运算,可以增强原始信号特征的同时降低噪声。卷积运算的具体过程如图1所示。

    

图1 卷积运算的具体过程

(2)激活函数

     在卷积神经网络中,常用的激活函数包括 Sigmoid 函数、Tanh 函数、Swish 函数和 Relu 函数。Relu 函数解决了 Sigmoid 函数和 Tanh 函数梯度消失的问题, 提高了模型收敛的速度,受到的广泛学者的欢迎。

(3)池化层

     池化层又称为下采样层,池化层分为平均池化层和最大池化层。其中,最大池化层通过将输入分为矩形池化区域,并计算每个区域的最大值来执行下采样, 而平均池化层则是计算池化区域的平均值来执行下采样。池化层的池化过程如图2所示。

图2 池化过程示意图

1.2 LSTM原理 

    LSTM采用循环神经网络( Recurrent Neural Network,RNN )架构[8],它是专门为从序列中学习长期依赖关系而设计的。LSTM可以使用4个组件:输入门、输出门、遗忘门和具有自循环连接的单元来移除或添加块状态的信息。其神经元结构如图3所示。

图3  LSTM网络结构

       设输入序列共有 k 个时间步,LSTM 门控机制 结构为遗忘门、输入门和输出门,xt携带网络输入值 作为向量引入系统,ht 通过隐含层对 LSTM 细胞进 行输出,ct携带着 LSTM 细胞状态进行运算。LSTM 运算规则如下:

      计算后保留 ct与 ht,用于下一时间步的计算;最后一步计算完成后,将隐藏层向量 hk作为输出与本组序列对应的预测值对比,得出损失函数值,依据梯度下降算法,优化权重和偏置参数,以此训练出迭代次数范围内最精确的网络参数。

1.3 CNN-LSTM框架

    以时序预测为例,本次分享的CNN-LSTM的框架如图4所示。

图4 CNN-LSTM框架

二、代码实战

clcclearload('Train.mat')load('Test.mat')% LSTM 层设置,参数设置inputSize = size(Train_xNorm{1},1);   %数据输入x的特征维度outputSize = 1;  %数据输出y的维度  numhidden_units1=50;numhidden_units2= 20;numhidden_units3=100;%opts = trainingOptions('adam', ...    'MaxEpochs',10, ...    'GradientThreshold',1,...    'ExecutionEnvironment','cpu',...    'InitialLearnRate',0.001, ...    'LearnRateSchedule','piecewise', ...    'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新    'LearnRateDropFactor',0.5, ...    'Shuffle','once',...  % 时间序列长度    'SequenceLength',k,...    'MiniBatchSize',24,...    'Verbose',0);%% lstmlayers = [ ...        sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置    sequenceFoldingLayer('name','fold')    convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')    batchNormalizationLayer('name','batchnorm1')    reluLayer('name','relu1')    maxPooling2dLayer([1,3],'Stride',1,'Padding','same','name','maxpool')    sequenceUnfoldingLayer('name','unfold')    flattenLayer('name','flatten')    lstmLayer(numhidden_units1,'Outputmode','sequence','name','hidden1')     dropoutLayer(0.3,'name','dropout_1')    lstmLayer(numhidden_units2,'Outputmode','last','name','hidden2')     dropoutLayer(0.3,'name','drdiopout_2')    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %    tanhLayer('name','softmax')    regressionLayer('name','output')];lgraph = layerGraph(layers)lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');plot(lgraph)%% 网络训练ticnet = trainNetwork(Train_xNorm,Train_yNorm,lgraph,opts);%% 测试figurePredict_Ynorm = net.predict(Test_xNorm);Predict_Y  = mapminmax('reverse',Predict_Ynorm',yopt);Predict_Y = Predict_Y';plot(Predict_Y,'g-')hold on plot(Test_y);    legend('预测值','实际值')

实验结果:


    部分知识来源于网络,如有侵权请联系作者删除~


    今天的分享就到这里了,后续想了解智能算法、机器学习、深度学习和信号处理相关理论的可以后台私信哦~希望大家多多转发点赞加收藏,你们的支持就是我源源不断的创作动力!


作 者 | 华 夏

编 辑 | 华 夏

校 对 | 华 夏

相关文章:

基于CNN-LSTM的时序预测MATLAB实战

一、算法原理 1.1 CNN原理 卷积神经网络具有局部连接、权值共享和空间相关等特性。卷积神经网络结构包含卷积层、激活层和池化层。 (a)二维卷积层将滑动卷积滤波器应用于输入。该层通过沿输入垂直和水平方向 移动滤波器对输入进行卷积,并计…...

MySQL高可用九种方案

有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址[1] 参考视频[2] MMM 方案(单主) MySQL 高可用方案之 MMM(Multi-Master Replication Manager&#x…...

react 通过ref 获取对应 dom 的位置信息

需求: 在点击某个dom 元素的时候滚动条要同步滚动 进程: 获取ref 打印,打印出来是一个dom 元素,看不到有什么方法查找 dom 属性信息找到了两个参数,offsetLeft:返回元素的水平偏移位置。 offsetTop&…...

SpringSecurity学习 - 认证和授权

一般来说中大型的项目都是使用SpringSecurity 来做安全框架。小项目有Shiro的比较多,因为相比与SpringSecurity,Shiro的上手更加的简单。 一般Web应用的需要进行认证和授权。 认证:验证当前访问系统的是不是本系统的用户,并且要…...

JDK jps命令复习

之前写过jdk命令工具的博文,下面复习jps命令; jps 是 Java Process Status Tool 的简称,它的作用是为了列出所有正在运行中的 Java 虚拟机进程和相关信息; jps 命令参数 -q 只输出进程 ID,省略主类的名称 -m 输出虚拟机进程启动时传递…...

Android 13.0 屏蔽Launcher3桌面app图标的长按功能

1.概述 在13.0的产品定制化开发中,系统默认的Launcher3在workspace 第二屏通常都会显示app列表 点击进入app 列表页,长按app的icon图标会弹出 应用信息 弹窗 等信息,而产品的开发需要,不需要弹出这些信息,所以要求去掉app的icon图标的长按功能 2.屏蔽Launcher3桌面app图…...

软考和PMP哪个含金量更高?

软考中,能和pmp一起来比较的是软考高项,软考高级信息系统项目管理师,和PMP的共同点,基本来说都是项目管理类的证书。本质也都是适用于项目经理岗位的证书,软考高项中大部分考试内容是PMPIT技术两部分,其中项…...

第一章:最新版零基础学习 PYTHON 教程(第三节 - 下载并安装Python最新版本)

在这里,我们将讨论如何获得与在 Windows/Linux/mac OS 上安装 Python 相关的所有问题的答案。Python由Guido van Rossum于20世纪90年代初开发,最新版本为3.11,我们可以简称为Python3。 如何下载并安装Python? 要了解如何安装 P…...

Spring 中三种 BeanName 生成器!

无论我们是通过 XML 文件,还是 Java 代码,亦或是包扫描的方式去注册 Bean,都可以不设置 BeanName,而 Spring 均会为之提供默认的 beanName,今天我们就来看看 Spring 中三种处理不同情况的 beanName 生成器。 1. BeanN…...

Go基础-文件、字符

文件创建 导入“os”包,创建文件,读写文件的函数都在改包。 指定创建的文件存放路径以及文件名。 执行Create( )函数,进行文件创建。 关闭文件。 package mainimport ("fmt""os" )func main() {//创建文件,…...

启动YOLO进行图片物体识别

查看官方文档YOLO: Real-Time Object Detection 这些是一些模型的对比,显示了YOLO的优势,继续往下面看 CoCoData set 是一个数据库,用来训练模型,这里面有丰富的物体检测,分割数据集,图像经过了精确的segm…...

BMS电池管理系统的蓝牙芯片 国产高性能 低功耗蓝牙Soc芯片PHY6222

电池管理系统是对电池进行监控与控制的系统,将采集的电池信息实时反馈给用户,同时根据采集的信息调节参数,充分发挥电池的性能。但是,前技术中,在管理多个电池时,需要人员现场调试与设置,导致其…...

肖sir__mysql之三表__008

mysql之三表 create table student( stu_no int, stu_name varchar(10), sex char(1), age int(3), edit varchar(20) ) DEFAULT charsetutf8; insert into student values (1,‘wang’,‘男’,21,‘hello’), (2,‘小明’,‘女’,22,‘haha2’), (3,‘hu’,‘女’,23,‘haha3…...

【Linux】常用工具(上)

Linux 常用工具 一、Linux 软件包管理器 yum1. 软件包2. 查看软件包3. 安装/卸载软件4. yum 其他指令的功能 二、Linux 编辑器 - vim 使用1. vim 的基本概念2. vim 的基本操作(1)光标移动(命令模式)(2)光标…...

【kafka】可视化工具KAFKA EAGLE安装分享

目录 准备: 开始: 1.解压 2.环境变量配置 3.生效环境变量配置文件 3.修改配置文件 1.修改zookeeper集群信息 2.修改mysql配置信息 4.启动 5.异常排查 6.页面 创作不易,你的动力是我创作的动力,如果有帮助请关注我&…...

【深度装机】深度U盘装机后黑屏闪光标

装x64的系统 装机版的gho文件太多预装软件了。几年前买的这种无风扇的机器,之前装的ubuntu:装机U盘启动后,先删掉的所有的ubuntu分区。使用了10几年的AOC又肩负使命: 感觉发热还是挺大的。 有人说因为secure boot 打开secure boo…...

【性能测试】JMeter:集合点,同步定时器的应用实例!

一、集合点的定义 在性能测试过程中,为了真实模拟多个用户同时进行操作以度量服务器的处理能力,可以考虑同步虚拟用户以便恰好在同一时刻执行操作或发送请求。 通过插入集合点可以较真实模拟多个用户并发操作。 (注意:虽然通过加入集合点可…...

21天学会C++:Day11----运算符重载

CSDN的uu们&#xff0c;大家好。这里是C入门的第十一讲。 座右铭&#xff1a;前路坎坷&#xff0c;披荆斩棘&#xff0c;扶摇直上。 博客主页&#xff1a; 姬如祎 收录专栏&#xff1a;C专题 目录 1. 知识引入 2. 运算符重载 2.1 operator<() 2.2 operator() 2.3 o…...

面经pc端项目

创建项目 安装脚手架-----创建项目------选择自定义 sass基础语法 https://www.sass.hk/ sass语法有两个:sass(旧) scss(新) 1.scss语法 和less语法类似,支持嵌套,支持变量… scss: $变量名 less: @变量名 $color:orange; .box{width: 400px;height: 400px;borde…...

三步在两台服务器间迁移conda环境

引言&#xff1a; 背景是我现在要跑的实验在一台服务器上跑有点来不及了&#xff0c;需要将conda环境和文件一起迁移到另一台服务器上。文件的迁移可以用scp或者rsync。但是conda虚拟环境的迁移则不行。 步骤&#xff1a; step 1 将当前的虚拟幻境信息写入environment.yml c…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...