当前位置: 首页 > news >正文

基于Yolov8的野外烟雾检测(4):通道优先卷积注意力(CPCA),效果秒杀CBAM和SE等 | 中科院2023最新发表

   

目录

   

1.Yolov8介绍

2.野外火灾烟雾数据集介绍

 3.CPCA介绍

3.1 CPCA加入到yolov8

 4.训练结果分析

5.系列篇


1.Yolov8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.野外火灾烟雾数据集介绍

数据集大小737张,train:val:test 随机分配为7:2:1,类别:smoke

 3.CPCA介绍

论文:[2306.05196] Channel prior convolutional attention for medical image segmentation (arxiv.org)

摘要:本文提出了一种高效的通道先验卷积注意力(CPCA)方法,支持注意力权重在通道和空间维度上的动态分布。 通过采用多尺度深度卷积模块,可以有效地提取空间关系,同时保留通道先验。 CPCA具备聚焦信息渠道和重要区域的能力。 基于 CPCA 提出了一种用于医学图像分割的分割网络 CPCANet。 CPCANet 在两个公开可用的数据集上进行了验证。 通过与最先进的算法进行比较,CPCANet 提高了分割性能,同时需要更少的计算资源。 

现有研究问题点:

虽然 CBAM 整合了通道注意和空间注意,但它在其输出特征的所有通道上强制执行一致的空间注意分布。相反,SE(图 1(a))只整合了通道注意,这限制了它选择重要区域的能力。

本文创新:

  • 如图 1(c) 所示,作者提出了一种新的通道优先卷积注意力(Channel Prior Convolutional Attention,CPCA)方法,采用多尺度的深度可分离卷积模块构成空间注意力,可以在通道和空间维度上动态分配注意权重。

 图3:通道先验卷积注意力(CPCA)的整体结构包括通道注意力和空间注意力的顺序放置。特征图的空间信息是由通道注意力通过平均池化和最大池化等操作来聚合的。 随后,空间信息通过共享 MLP(多层感知器)进行处理并添加以生成通道注意力图。 通道先验是通过输入特征和通道注意力图的元素相乘获得的。 随后,通道先验被输入到深度卷积模块中以生成空间注意力图。 卷积模块接收空间注意力图以进行通道混合。 最终,通过通道混合结果与通道先验的逐元素相乘,获得细化的特征作为输出。 通道混合过程有助于增强特征的表示

3.1 CPCA加入到yolov8

核心代码:

######################  CPCAAttention   ####     start   by  AI&CV  ###############################class CPCAChannelAttention(nn.Module):def __init__(self, input_channels, internal_neurons):super(CPCAChannelAttention, self).__init__()self.fc1 = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True)self.fc2 = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True)self.input_channels = input_channelsdef forward(self, inputs):x1 = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))# print('x:', x.shape)x1 = self.fc1(x1)x1 = F.relu(x1, inplace=True)x1 = self.fc2(x1)x1 = torch.sigmoid(x1)x2 = F.adaptive_max_pool2d(inputs, output_size=(1, 1))# print('x:', x.shape)x2 = self.fc1(x2)x2 = F.relu(x2, inplace=True)x2 = self.fc2(x2)x2 = torch.sigmoid(x2)x = x1 + x2x = x.view(-1, self.input_channels, 1, 1)return x######################  CPCAAttention   ####     end   by  AI&CV  ###############################

核心代码:YoloV8优化:通道优先卷积注意力,效果秒杀CBAM和SE等 | 即插即用系列_AI小怪兽的博客-CSDN博客

 4.训练结果分析

训练结果如下:

原始mAP@0.5 0.839提升至0.890

YOLOv8_CPCAChannelAttention summary (fused): 171 layers, 3137427 parameters, 0 gradients, 7.8 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95):  67%|██████▋   | 2/3 [00:22<00:11, 11.59s/it]WARNING  NMS time limit 1.500s exceededClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:28<00:00,  9.40s/it]all        148        148       0.92      0.854       0.89      0.547

5.系列篇

1)基于Yolov8的野外烟雾检测

2)基于Yolov8的野外烟雾检测(2):多维协作注意模块MCA| 2023.9最新发布

3)基于Yolov8的野外烟雾检测(3):动态蛇形卷积,实现暴力涨点 | ICCV2023

4)基于Yolov8的野外烟雾检测(4):通道优先卷积注意力(CPCA) | 中科院2023最新发表 

相关文章:

基于Yolov8的野外烟雾检测(4):通道优先卷积注意力(CPCA),效果秒杀CBAM和SE等 | 中科院2023最新发表

目录 1.Yolov8介绍 2.野外火灾烟雾数据集介绍 3.CPCA介绍 3.1 CPCA加入到yolov8 4.训练结果分析 5.系列篇 1.Yolov8介绍 Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的&#xff08;SOTA&#xff09;模型&a…...

程序员必掌握的核心算法:提升编程技能的关键路径

一&#xff1a;引言 作为程序员&#xff0c;算法是我们编程生涯中的灵魂。算法是解决问题的方法和步骤&#xff0c;它们在计算机科学中扮演着至关重要的角色。无论你是初学者还是经验丰富的专业人士&#xff0c;都需要掌握一些核心算法&#xff0c;因为它们在各种应用场景中频…...

面试算法10:和为k的子数组

题目 输入一个整数数组和一个整数k&#xff0c;请问数组中有多少个数字之和等于k的连续子数组&#xff1f;例如&#xff0c;输入数组[1&#xff0c;1&#xff0c;1]&#xff0c;k的值为2&#xff0c;有2个连续子数组之和等于2。 分析 在从头到尾逐个扫描数组中的数字时求出前…...

王道考研操作系统

王道考研操作系统 计算机系统概述操作系统的概念操作系统的特征操作系统的发展历程操作系统内核中断和异常![在这里插入图片描述](https://img-blog.csdnimg.cn/162452b4c60144e0bd500e180127c447.png)系统调用操作系统结构虚拟机错题 进程与线程进程控制进程通信线程和多线程模…...

HEXO 基本使用

1 新建、编辑并预览文章 1. 新建文章 hexo new [layout] title # 或 hexo n [layout] title创建文章前要先选定模板&#xff0c;在hexo中也叫做布局。hexo支持三种布局&#xff08;layout&#xff09;&#xff1a;post(默认)、draft、page。我们先介绍如何使用已有布局…...

Webpack Sourcemap文件泄露漏洞

Webpack Sourcemap文件泄露漏洞 前言一、Webpack和Sourcemap1.1 什么是Webpack1.2 什么是Sourcemap二、漏洞利用2.1 使用reverse-sourcemap工具2.1 直接看前端代码三、漏洞挖掘漏洞修复前言 Webpack主要是用于前端框架进行打包的工具,打包后形成.js.map文件,如果.js.map文件…...

WebGL层次模型——单节点模型

目录 多个简单模型组成的复杂模型 层次结构模型 单关节模型 JointModel程序中模型的层次结构 示例程序&#xff08;JointMode.js&#xff09; 代码详解 绘制层次模型&#xff08;draw&#xff08;&#xff09;&#xff09; 程序效果 多个简单模型组成的复杂模型 绘制…...

【链表】反转链表 II-力扣 92 题

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...

【考研数学】高等数学第六模块 —— 空间解析几何(1,向量基本概念与运算)

文章目录 引言一、空间解析几何的理论1.1 基本概念1.2 向量的运算 写在最后 引言 我自认空间想象能力较差&#xff0c;所以当初学这个很吃力。希望现在再接触&#xff0c;能好点。 一、空间解析几何的理论 1.1 基本概念 1.向量 —— 既有大小&#xff0c;又有方向的量称为向…...

巨人互动|Facebook海外户Facebook客户反馈分数

Facebook客户反馈分数是一项用于衡量用户对Facebook产品和服务满意度的指标。该指标被广泛应用于各种调研和评估活动&#xff0c;帮助Facebook了解用户对其平台和功能的意见和建议&#xff0c;并从中识别出改进的机会。 巨人互动|Facebook海外户&Facebook新闻提要的算法&am…...

Tomcat多实例部署和动静分离

一、多实例部署&#xff1a; 多实例&#xff1a;多实例就是在一台服务器上同时开启多个不同的服务端口&#xff0c;同时运行多个服务进程&#xff0c;这些服务进程通过不同的socket监听不同的服务端口来提供服务。 1.前期准备&#xff1a; 1.关闭防火墙&#xff1a;systemctl …...

关于 C/C++ 中在指针前加 const 关键字的作用说明

1. 作用说明&#xff1a; 在指针前加 const 的用途为&#xff1a;不可改变指针指向的内存的值&#xff0c;即将该指向指向的内存中的变量置为只读&#xff08;read-only) 变量。 但是&#xff0c;可以给 const 的指针赋值&#xff0c;即将具有 const 属性的指针指向别的内存地…...

Vue.js新手指南:从零开始建立你的第一个应用

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

【案例】--EasyExcel导入导出文件案例

目录 一、前言二、EasyExcel解析(导入)文件2.1、EasyExcel选型2.2、如何存储excel解析的文件2.3、解析格式规则的excel文件2.4、解析未知格式规则的excel文件三、EasyExcel解析(导出)文件3.1、导出基本代码实现一、前言 最近项目中,需要对excel、csv等文件进行解析,并做相关…...

深入探索图像处理:从基础到高级应用

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 图像处理是计算机视觉领…...

Jetpack Compose基础组件 - Image

Image的源码参数预览 Composable fun Image(painter: Painter,contentDescription: String?,modifier: Modifier Modifier,alignment: Alignment Alignment.Center,contentScale: ContentScale ContentScale.Fit,alpha: Float DefaultAlpha,colorFilter: ColorFilter? …...

UINavigationController内的页面跳转实现 UIViewController 的 present和dismiss动画

UINavigationController内部页面跳转默认为左右切换&#xff0c;但是当我们想向上弹出进入界面&#xff0c;或者向下离开界面时&#xff0c;需要实现UINavigationControllerDelegate 协议自行控制页面的动画(否则直接在navVc上叠加动画会导致动画结束后的那个页面&#xff0c;自…...

PMP对项目管理工作有什么用?

首先&#xff0c;项目管理岗位基本是不限行业的&#xff0c;所以&#xff0c;只要是项目管理相关的岗位&#xff0c;pmp证书都是能起到效果的&#xff0c;不用担心局限性太大&#xff0c;而且&#xff0c;pmp证书是国际证书&#xff0c;无论国企还是外企&#xff0c;都是认可这…...

Python 将‘20230919182550‘ 转换为 ‘%Y年%m月%d日 %H:%M‘

为了将给定的时间字符串 cur_time 转换为指定的格式&#xff0c;可以使用 Python 的 datetime 模块。以下是完成此操作的步骤&#xff1a; 使用 strptime 方法将 cur_time 转换为一个 datetime 对象。使用 strftime 方法将这个 datetime 对象转换为所需的格式。 这是具体的代…...

vue2.0检测无用的代码并删除

&#xff08;1&#xff09;、使用 useless-files-webpack-plugin 来查找无用文件 npm i useless-files-webpack-plugin -S &#xff08;2&#xff09;、vue.config.js中配置 const UselessFile require(useless-files-webpack-plugin)chainWebpack: config > {config.plu…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...