国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作
要用人工智能技术来庆祝国庆中秋,我们可以使用生成对抗网络(GAN)生成具有节日氛围的画作。这里将使用深度学习框架 TensorFlow 和 Keras 来实现。

一、生成对抗网络(GAN)
生成对抗网络(GANs,Generative Adversarial Networks)是一种深度学习模型,由蒙特利尔大学的 Ian Goodfellow 等人在 2014 年提出。GANs 主要通过让两个神经网络(生成器和判别器)互相博弈的方式进行训练,实现生成数据的模拟。它可以用于图像合成、视频生成、语音合成、文本生成等多个领域。
- 图像合成:
案例:DeepDream
简介:DeepDream 是一个基于 GAN 的图像处理工具,通过引入对抗性损失函数,可以实现对图像的深度风格迁移。
代码:
使用 TensorFlow 和 Keras 库实现的 DeepDream 代码示例:
import tensorflow as tf
from tensorflow.keras.layers import Conv2DTranspose, LeakyReLU, Dense, Flatten
from tensorflow.keras.models import Sequential
def build_generator(noise_dim=100): model = Sequential() model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,))) model.add(Reshape((4, 4, 256))) model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh')) return model
def build_discriminator(): model = Sequential() model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3))) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(256, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Flatten()) model.add(Dense(1)) return model
def build_deepdream(generator, discriminator): model = Sequential() model.add(generator) model.add(discriminator) return model
- 视频生成:
案例:VideoGAN
简介:VideoGAN 是一个基于 GAN 的视频生成模型,可以生成自然界中的动态场景。
代码:目前尚无公开的完整的 VideoGAN 代码,但可以参考这个项目:https://github.com/mahasem/video-gan - 语音合成:
案例:WaveNet
简介:WaveNet 是一个基于 GAN 的语音合成模型,可以生成高质量的语音信号。
代码:使用 TensorFlow 实现的 WaveNet 代码示例:
import tensorflow as tf
def build_generator(input_dim, hidden_dim, output_dim): model = Sequential() model.add(Dense(hidden_dim, input_dim)) model.add(Reshape((hidden_dim, 1, 1))) model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv1D(output_dim, kernel_size=3, strides=1, padding='same')) model.add(Tanh())
def build_discriminator(): model = Sequential() model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same', input_shape=(1, input_dim))) model.add(LeakyReLU(alpha=0.2)) model.add(Conv1D(hidden_dim * 2, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv1D(hidden_dim * 4, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Flatten()) model.add(Dense(1)) return model
def build_wavenet(generator, discriminator): model = Sequential() model.add(generator) model.add(discriminator) return model
在这个示例中,我们首先定义了 build_generator 函数,用于构建生成器。生成器接收一个随机的噪声向量作为输入,然后通过一系列的转换操作生成一个新的语音样本。接下来,我们定义了 build_discriminator 函数,用于构建判别器。判别器的任务是区分真实语音样本和生成器生成的虚假样本。最后,我们定义了 build_wavenet 函数,用于将生成器和判别器组合成一个完整的 WaveNet 模型。
需要注意的是,这个示例仅提供了一个简化版的 WaveNet 实现。在实际应用中,WaveNet 通常会使用更多的隐藏层和更大的网络结构以生成更高质量的语音信号。
4.文本生成:
案例:GAN
代码:使用 TensorFlow 和 Keras 库实现的 GAN 代码示例:
以下是使用 TensorFlow 和 Keras 库实现的 GAN(生成对抗网络)代码示例:
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Flatten, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, UpSampling2D
from tensorflow.keras.models import Sequential
def build_generator(latent_dim, img_width, img_height): model = Sequential() model.add(Dense(128, input_shape=(latent_dim,))) model.add(Reshape((128, 1, 1))) model.add(Conv2DTranspose(128, kernel_size=7, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(256, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(512, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(1024, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(2048, kernel_size=3, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Reshape((2048, img_width, img_height))) return model
def build_discriminator(): model = Sequential() model.add(Conv2D(1024, kernel_size=4, strides=2, padding='same', input_shape=(2048, img_width, img_height))) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2D(512, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2D(256, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2D(128, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Flatten()) model.add(Dense(1)) return model
def build_gan(generator, discriminator): model = Sequential() model.add(generator) model.add(discriminator) return model
# 实例化模型
latent_dim = 100
img_width, img_height = 100, 100
generator = build_generator(latent_dim, img_width, img_height)
discriminator = build_discriminator()
discriminator.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
discriminator.trainable = False
gan = build_gan(generator, discriminator)
gan.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
# 训练 GAN
generator, discriminator = gan.layers
for epoch in range(100): for real_images in np.random.uniform(0, 255, (100, img_width, img_height)): real_labels = tf.ones((100, 1)) noise = np.randomfake_images = generator(noise)fake_labels = tf.zeros((100, 1))all_images = tf.concat((real_images, fake_images), axis=0) all_labels = tf.concat((real_labels, fake_labels), axis=0) discriminator.train_on_batch(all_images, all_labels) # 训练生成器 noise = np.random.normal(0, 1, (100, latent_dim)) gan.train_on_batch(noise, real_labels) print(f'Epoch {epoch + 1} finished.')
- 机器翻译:
案例:Neural Machine Translation (NMT)
代码:目前尚无公开的完整的 NMT 代码,但可以参考这个项目:https://github.com/Rayhane-mamah/OpenNMT - 数据增强:
案例:数据增强的 GANs
代码:使用 TensorFlow 和 Keras 库实现的数据增强 GANs 代码示例 - 医学影像处理:
案例:医学影像生成的 GANs
代码:使用 TensorFlow 和 Keras 库实现的医学影像生成 GANs 代码示例 - 游戏生成:
案例:游戏关卡生成的 GANs
代码:使用 TensorFlow 和 Keras 库实现的游戏关卡生成 GANs 代码示例 - 风格迁移:
案例:Neural Style Transfer
代码:使用 TensorFlow 和 Keras 库实现的 Neural Style Transfer 代码示例 - 数据去噪:
案例:去噪 GANs
代码:使用 TensorFlow 和 Keras 库实现的去噪 GANs 代码示例
以上5到10下次会详细介绍
以上仅为 GANs 应用的一部分,实际上 GANs 在许多其他领域也有广泛的应用,例如推荐系统、自动驾驶、机器人等。随着技术的不断发展,GANs 的应用范围还将继续扩大。
二、用GAN创作画作
首先,确保已经安装了 TensorFlow 和 Keras。然后,我们将使用一个预训练的生成对抗网络,例如 DCGAN。
- 安装所需库:
pip install tensorflow
- 导入所需库:
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, Flatten
from tensorflow.keras.models import Sequential
- 定义生成器和判别器模型。
def build_generator(noise_dim=100): model = Sequential() model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,))) model.add(Reshape((4, 4, 256))) model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization()) model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization()) model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh')) return model
def build_discriminator(): model = Sequential() model.add(Conv2D(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3))) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2D(128, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2D(256, kernel_size=5, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Flatten()) model.add(Dense(1)) return model
- 加载预训练的 DCGAN 模型权重。
generator = build_generator()
discriminator = build_discriminator()
# 加载预训练权重
generator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')
discriminator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')
- 定义生成图像的函数。
def generate_image(generator, noise): noise = np.reshape(noise, (1, -1)) image = generator.predict(noise)[0] return image
- 生成具有国庆中秋氛围的画作。
def main(): # 创建一个 100x100 像素的画布 canvas = np.random.random((100, 100, 3)) * 255# 生成一个 100 维的随机噪声向量 noise = np.random.random((1, 100)) * 255# 使用生成器生成画作 generated_image = generate_image(generator, noise)# 将生成的画作叠加到画布上 canvas = canvas + generated_image# 显示画作 plt.imshow(canvas) plt.show()
if __name__ == '__main__': main()
运行上述代码后,将生成一幅具有国庆中秋氛围的画作。请注意,生成的图像可能不会完美地表现出国庆和中秋的元素,但可以作为一种尝试。此外,可以根据需要调整画布大小和噪声向量的维度以获得不同的画作效果。

相关文章:
国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作
要用人工智能技术来庆祝国庆中秋,我们可以使用生成对抗网络(GAN)生成具有节日氛围的画作。这里将使用深度学习框架 TensorFlow 和 Keras 来实现。 一、生成对抗网络(GAN) 生成对抗网络(GANs,…...
stm32 串口发送和接收
串口发送 #include "stm32f10x.h" // Device header #include <stdio.h> #include <stdarg.h>//初始化串口 void Serial_Init() {//开启时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Pe…...
Vite + Vue3 实现前端项目工程化
通过官方脚手架初始化项目 第一种方式,这是使用vite命令创建,这种方式除了可以创建vue项目,还可以创建其他类型的项目,比如react项目 npm init vitelatest 第二种方式,这种方式是vite专门为vue做的配置,…...
Java动态代理Aop的好处
1. 预备知识-动态代理 1.1 什么是动态代理 动态代理利用Java的反射技术(Java Reflection)生成字节码,在运行时创建一个实现某些给定接口的新类(也称"动态代理类")及其实例。 1.2 动态代理的优势 动态代理的优势是实现无侵入式的代…...
各种存储性能瓶颈如何分析与优化?
【摘要】本文结合实践剖析存储系统的架构及运行原理,深入分析各种存储性能瓶颈场景,并提出相应的性能优化手段,希望对同行有一定的借鉴和参考价值。 【作者】陈萍春,现就职于保险行业,拥有多年的系统、存储以及数据备…...
Android StateFlow初探
Android StateFlow初探 前言: 最近在学习StateFlow,感觉很好用,也很神奇,于是记录了一下. 1.简介: StateFlow 是一个状态容器式可观察数据流,可以向其收集器发出当前状态更新和新状态更新。还可通过其 …...
Docker Compose初使用
简介 Docker-Compose项目是Docker官方的开源项目,负责实现对Docker容器集群的快速编排。 Docker-Compose将所管理的容器分为三层,分别是 工程(project),服务(service)以及容器(cont…...
测试与FastAPI应用数据之间的差异
【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 当使用两个不同的异步会话来测试FastAPI应用程序与数据库的连接时,可能会出现以下错误: 在测试中,在数据库中创建了一个对象&#x…...
WebStorm 2023年下载、安装教程、亲测有效
文章目录 简介安装步骤常用快捷键 简介 WebStorm 是JetBrains公司旗下一款JavaScript 开发工具。已经被广大中国JS开发者誉为“Web前端开发神器”、“最强大的HTML5编辑器”、“最智能的JavaScript IDE”等。与IntelliJ IDEA同源,继承了IntelliJ IDEA强大的JS部分的…...
k8s储存卷
卷的类型 In-Tree存储卷插件 ◼ 临时存储卷 ◆emptyDir ◼ 节点本地存储卷 ◆hostPath, local ◼ 网络存储卷 ◆文件系统:NFS、GlusterFS、CephFS和Cinder ◆块设备:iSCSI、FC、RBD和vSphereVolume ◆存储平台:Quobyte、PortworxVolume、Sto…...
【解决Win】“ 无法打开某exe提示无法成功完成操作,因为文件包含病毒或潜在的垃圾软件“
在下载某个应用程序,打开时出现了“无法成功完成操作因为文件包含病毒或潜在垃圾”的提示,遇到这个情况怎么解决? 下面为大家分享故障原因及具体的处理方法。 故障原因 是由于杀毒 防护等原因引起的。 解决方案 打开Windows 安全中心 选择…...
SpringBoot调用ChatGPT-API实现智能对话
目录 一、说明 二、代码 2.1、对话测试 2.2、单次对话 2.3、连续对话 2.4、AI绘画 一、说明 我们在登录chatgpt官网进行对话是不收费的,但需要魔法。在调用官网的API时,在代码层面上使用,通过API KEY进行对话是收费的,不过刚…...
element-table出现错位解决方法
先看示例图,这个在开发中还是很常遇到的,在table切换不同数据时或者切换页面时,容易出现: 解决方法很简单,官方有提供方法: 我们可以在重新渲染数据后: this.$nextTick(() > {this.$refs.…...
DC电源模块具有不同的安装方式和安全规范
BOSHIDA DC电源模块具有不同的安装方式和安全规范 DC电源模块是将低压直流电转换为需要的输出电压的装置。它们广泛应用于各种领域和行业,如通信、医疗、工业、家用电器等。安装DC电源模块应严格按照相关的安全规范进行,以确保其正常运行和安全使用。 D…...
zabbix自定义监控、钉钉、邮箱报警
目录 一、实验准备 二、安装 三、添加监控对象 四、添加自定义监控项 五、监控mariadb 1、添加模版查看要求 2、安装mariadb、创建用户 3、创建用户文件 4、修改监控模版 5、在上述文件中配置路径 6、重启zabbix-agent验证 六、监控NGINX 1、安装NGINX,…...
短信、邮箱验证码本地可以,部署到服务器接口却不能使用
应对公司双验证要求,对本系统做邮箱、短信验证码登录,本地开发正常发送,到服务器上部署却使用失败,已全部解决,记录坑。 一、nginx拦截 先打开你的服务器 nginx.conf 看看有没有做接口拦截。(本地可能做Sp…...
Java web基础知识
Servlet Servlet是sun公司开发的动态web技术 sun在API中提供了一个接口叫做 Servlet ,一个简单的Servlet 程序只需要完成两个步骤 编写一个实现了Servlet接口的类 把这个Java部署到web服务器中 一般来说把实现了Servlet接口的java程序叫做,Servlet 初步…...
【Linux学习】01Linux初识与安装
Linux(B站黑马)学习笔记 01Linux初识与安装 文章目录 Linux(B站黑马)学习笔记前言01Linux初识与安装操作系统简述Linux初识虚拟机介绍安装VMware Workstation虚拟化软件VMware中安装CentOS7 Linux操作系统下载CentOS操作系统VMwa…...
android 将数据库中的 BLOB 对象动态加载为 XML,并设置到 Android Activity 的内容视图上
以下是一个示例代码,演示如何将数据库中的 BLOB 对象动态加载为 XML,并设置到 Android Activity 的内容视图上: ```java import android.app.Activity; import android.content.ContentValues; import android.content.Context; import android.database.Cursor; import and…...
Android12之强弱智能指针sp/wp循环引用死锁问题(一百六十六)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
