ChatGPT是什么?为何会引爆国内算力需求?
过去十年中,通过“深度学习+大算力”从而获得训练模型是实现人工智能的主流技术途径。由于深度学习、数据和算力这三个要素都已具备,全世界掀起了“大炼模型”的热潮,也催生了大批人工智能企业。
大模型是人工智能的发展趋势和未来
大模型,又称为预训练模型、基础模型等,是“大算力+强算法”结合的产物。大模型通常是在大规模无标注数据上进行训练,学习出一种特征和规则。基于大模型进行应用开发时,将大模型进行微调,如在下游特定任务上的小规模有标注数据进行二次训练,或者不进行微调,就可以完成多个应用场景的任务。
迁移学习是预训练技术的主要思想。当目标场景的数据不足时,首先在数据量庞大 的公开数据集上训练基于深度神经网络的 AI 模型,然后将其迁移到目标场景中,通 过目标场景中的小数据集进行微调,使模型达到需要的性能。在这一过程中,这种在公开数据集训练过的深层网络模型,即为“预训练模型”。使用预训练模型很大程度上降低了下游任务模型对标注数据数量的要求,从而可以很好地处理一些难以获得大量标注数据的新场景。大模型正是人工智能发展的趋势和未来。

ChatGPT是大模型的直接产品
单点工具往往是基于大模型产生的能实际应用的产品。ChatGPT就是在GPT-3.5模型的基础上,产生出的能“对话”的AI系统。
2022年11月30日, OpenAI发布ChatGPT,一款人工智能技术驱动的自然语言处理工具,能够通过学习和理解人类的语言来进行对话和互动,甚至能完成撰写邮件、视频脚本、文案、翻译、代码等任务。ChatGPT对搜索领域或带来巨大冲击。由于ChatGPT能够与用户进行交流明确需求并具备文本生成能力进行回复,其相对于传统搜索引擎在输入端和输出端都具有难以替代的优势。
因而ChatGPT可能对搜索带来一个重大变化:用户将会转向聊天机器人寻求帮助,而不是通过谷歌提供的网站进行过滤。同时,技术上,ChatGPT也可能会降低搜索引擎的门槛。可以说,ChatGPT已经真真切切地改变了搜索领域,对众多科技公司产生了巨大的挑战。
AI大模型里程碑式的胜利
ChatGPT采用监督学习+奖励模型进行语言模型训练。ChatGPT使用来自人类反馈的强化 学习 (RLHF) 来训练该模型。首先使用监督微调训练了一个初始模型:人类AI训练员提供对话,他们在对话中扮演双方——用户和AI助手。其次,ChatGPT让标记者可以访问模型编写的建议,以帮助他们撰写回复。最后,ChatGPT将这个新的对话数据集与原有数据集混合,将其转换为对话格式。具体来看,主要包括三个步骤:

资料来源:OpenAI 官网、华泰研究
1)第一阶段:训练监督策略模型。在ChatGPT模型的训练过程中,需要标记者的参与监 督过程。首先,ChatGPT会从问题数据集中随机抽取若干问题并向模型解释强化学习机制, 其次标记者通过给予特定奖励或惩罚引导AI行为,最后通过监督学习将这一条数据用于微调GPT3.5模型。
2)第二阶段:训练奖励模型。这一阶段的主要目标,在于借助标记者的人工标注,训练出合意的奖励模型,为监督策略建立评价标准。训练奖励模型的过程同样可以分为三步:1、抽样出一个问题及其对应的几个模型输出结果;2、标记员将这几个结果按质量排序;3、将排序后的这套数据结果用于训练奖励模型。
3)第三阶段:采用近端策略优化进行强化学习。近端策略优化(Proximal Policy Optimization)是一种强化学习算法,核心思路在于将Policy Gradient中On-policy的训练过程转化为Off-policy,即将在线学习转化为离线学习。具体来说,也就是先通过监督学习策略生成PPO模型,经过奖励机制反馈最优结果后,再将结果用于优化和迭代原有的PPO模型参数。往复多次第二阶段和第三阶段,从而得到参数质量越来越高的ChatGPT模型。
ChatGPT离不开大算力支持
大模型训练需要大算力支持,ChatGPT坐拥丰富算力资源。从大模型自身的发展过程来看,参数量的变化是一个非常值得关注的指标。从最早的ResNet、Inception等模型,到如今的GPT,模型参数量不断增长。2018年前后OpenAI先后推出Transformer和GPT-1模型,参数量来到1亿级别。随后谷歌提出3亿参数的BERT模型,参数量再次增长。2019、2020年OpenAI加速追赶,陆续迭代出GPT-2、GPT-3模型,参数量分别为15亿、1750亿,实现模型体量质的飞跃。另一方面,参数运算需要大规模并行计算的支持, 核心难点在于内存交换效率,取决于底层GPU内存容量。
OpenAI预计人工智能科学研究要想取得突破,所需要消耗的计算资源每3~4个月就要翻一倍,资金也需要通过指数级增长获得匹配。
在算力方面,GPT-3.5在微软Azure AI超算基础设施(由GPU组成的高带宽集群)上进行训练,总算力消耗约3640PF-days(即每秒一千万亿次计算,运行3640天)。
在大数据方面,GPT-2用于训练的数据取自于Reddit上高赞的文章,数据集共有约800万篇文章,累计体积约40G;GPT-3模型的神经网络是在超过45TB的文本上进行训练的,数据相当于整个维基百科英文版的160倍。
按照量子位给出的数据,将一个大型语言模型(LLM)训练到GPT-3级的成本高达460万美元。
就ChatGPT而言,需要TB级的运算训练库,甚至是P-Flops级的算力。需要7~8个投资规模30亿、算力500P的数据中心才能支撑运行。就目前的服务器处理能力来看,大概是几十到几百台GPU级别的服务器的体量才能够实现,而且需要几日甚至几十日的训练,它的算力需求非常惊人。
国内布局ChatGPT引爆算力需求
随着ChatGPT火遍全球,国内互联网厂商陆续布局ChatGPT类似产品,或将加大核心城市IDC算力供给缺口。据艾瑞咨询,2021年国内IDC行业下游客户占比中,互联网厂商居首位,占比为60%;其次为金融业,占比为20%;政府机关占比10%,位列第三。而目前国内布局ChatGPT类似模型的企业同样以互联网厂商为主,如百度宣布旗下大模型产品“文心一言”将于2022年3月内测、京东于2023年2月10日宣布推出产业版ChatGPT:ChatJD。另一方面,国内互联网厂商大多聚集在北京、上海、深圳、杭州等国内核心城市,在可靠性、安全性及网络延迟等性能要求下,或将加大对本地IDC算力需求,国内核心城市IDC算力供给缺口或将加大。
而与需求相对应的是,我国智能算力规模保持快速增长。IDC报告显示,2022年人工智能算力规模达到每秒268百亿亿次浮点运算,超过通用算力规模,预计未来5年中国人工智能算力规模的年复合增长率将达52.3%。
在此背景下,随着国内厂商相继布局ChatGPT类似模型,算力需求或将持续释放,对于承接ChatGPT引爆的算力需求,思腾合力早有布局。
思腾合力一直专注于人工智能领域,提供云计算、AI服务器、AI工作站、系统集成、产品定制、软件开发、边缘计算等产品和整体解决方案,致力于成为行业领先的人工智能基础架构解决方案商。2021年,思腾合力乘势打造人工智能产业园,承接京津冀一体化乃至全国AI智能高科技企业入驻,通过资源整合、创新创业,打造AI智能产业链聚集区。
公司深耕高性能计算领域多年,已经打造出了一套完全自主软硬件结合的产品生态。全面覆盖云、边、端各层级算力需求,激活数据活力,充分释放数字潜能。对于ChatGPT推动的AI开发范式的转变。思腾合力将充分发挥IT架构优势,提升对数据价值的挖掘能力,支撑新旧范式的结合与转换。
思腾合力将在算力服务上持续精进,充分承接中国ChatGPT产品的算力需求,相辅相成,互相成就,聚力造就中国AI产业的大发展。
相关文章:
ChatGPT是什么?为何会引爆国内算力需求?
过去十年中,通过“深度学习大算力”从而获得训练模型是实现人工智能的主流技术途径。由于深度学习、数据和算力这三个要素都已具备,全世界掀起了“大炼模型”的热潮,也催生了大批人工智能企业。大模型是人工智能的发展趋势和未来大模型&#…...
【Linux】进程间通信(万字详解)—— 匿名管道 | 命名管道 | System V | 共享内存
🌈欢迎来到Linux专栏~~进程通信 (꒪ꇴ꒪(꒪ꇴ꒪ )🐣,我是Scort目前状态:大三非科班啃C中🌍博客主页:张小姐的猫~江湖背景快上车🚘,握好方向盘跟我有一起打天下嘞!送给自己的一句鸡汤…...
【Database-02】达梦数据库 - DM Manager管理工具安装
1、简介 DM Manager是达梦数据库自带的图形化界面管理工具,在安装达梦数据库的时候就会自动安装。 Linux环境,默认安装路径为:达梦安装目录/tool/manager,如果Linux是安装GUI,那么就可以直接启动使用。 实际大部分使…...
剑指 Offer 42. 连续子数组的最大和
剑指 Offer 42. 连续子数组的最大和 难度:easy\color{Green}{easy}easy 题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为O(n)。 示例1: 输入: nums [-2,1,-3,4,-1,2,1,-5,4] 输…...
双指针 (C/C++)
1. 双指针 双指针算法的核心思想:将暴力解法的时间复杂度,通常是O(N*N),通过某种特殊的性质优化到O(N)。 做题思路:先想想暴力解法的思路,然后分析这道题的特殊性质,一般是单调性。然后得出双指针算法的思路…...
CVE-2023-23752 Joomla未授权访问漏洞分析
漏洞概要 Joomla 在海外使用较多,是一套使用 PHP 和 MySQL 开发的开源、跨平台的内容管理系统(CMS)。 Joomla 4.0.0 至 4.2.7 版本中的 ApiRouter.php#parseApiRoute 在处理用户的 Get 请求时未对请求参数有效过滤,导致攻击者可向 Joomla 服务端点发送包…...
单通道说话人语音分离——Conv-TasNet(Convolutional Time-domain audio separation Network)
单通道说话人语音分离——Conv-TasNet模型(Convolutional Time-domain audio separation Network) 参考文献:《Conv-TasNet: Surpassing Ideal Time-FrequencyMagnitude Masking for Speech Separation》 1.背景 在真实的声学环境中,鲁棒的语音处理通常…...
华为OD机试真题Python实现【环中最长子串】真题+解题思路+代码(20222023)
环中最长子串 题目 给你一个字符串s,首尾相连成一个环形, 请你在环中找出o字符出现了偶数次最长子字符串的长度. 备注: 1 <= s.lenth <= 5x10^5 s只包含小写英文字母 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 ## 输入 输入是…...
Netcat安装与使用(nc)
Netcat安装与使用1.Netcat简介1.1.Netcat安装1.1.1.安装整体流程1.1.1.1.安装依赖1.1.1.2.安装Netcat1.1.1.3.配置环境变量1.1.1.4.测试1.2.Netcat基本功能1.3.Netcat常用参数2.Netcat用法2.1.前期准备2.2.banner相关信息抓取2.3.端口扫描2.3.1.扫描指定端口2.3.2.扫描指定端口…...
蓝桥杯:聪明的猴子
题目链接:聪明的猴子https://www.lanqiao.cn/problems/862/learning/ 目录 题目描述 输入描述 输出描述 输入输出样例 运行限制 解题思路: 最小生成树 AC代码(Java): 课后练习: 题目描述 在一个热带雨林中生存…...
Spring Boot应用如何快速接入Prometheus监控
1. Micrometer简介Micrometer为Java平台上的性能数据收集提供了一个通用的API,它提供了多种度量指标类型(Timers、Guauges、Counters等),同时支持接入不同的监控系统,例如Influxdb、Graphite、Prometheus等。可以通过M…...
vscode远程调试python
目的 注意:这里我们想要实现的是:用vscode 使用remote ssh打开project,然后直接在project里面进行debug,而不需要 在本地vscode目录打开一样的project。 假设大家已经会使用remote ssh打开远程服务器的代码了,那么只…...
Spring Boot 框架 集成 Knife4j(内含源代码)
Spring Boot 框架 集成 Knife4j(内含源代码) 源代码下载链接地址:https://download.csdn.net/download/weixin_46411355/87480176 目录Spring Boot 框架 集成 Knife4j(内含源代码)源代码下载链接地址:[htt…...
什么蓝牙耳机适合打游戏?打游戏不延迟的蓝牙耳机
为了提升游戏体验,除了配置强悍的主机外,与之搭配蓝牙耳机等外设产品也尤为重要,今天就带大家来了解一下以下几款适合玩游戏,低延迟操作的蓝牙耳机。 第一款:南卡小音舱蓝牙耳机 参考价格:239元 推荐理由…...
【项目设计】高并发内存池(一)[项目介绍|内存池介绍|定长内存池的实现]
🎇C学习历程:入门 博客主页:一起去看日落吗持续分享博主的C学习历程博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记&…...
初识MySQL下载与安装【快速掌握知识点】
目录 前言 MySQL版本 MySQL类型 MySQL官网有.zip和.msi两种安装形式; MySQL 下载 1、MySQL 属于 Oracle 旗下产品,进入Oracle官网下载 2、点击产品,找到MySQL 3、进入MySQL页面 4、点击Download(下载)&#x…...
如何终止一个线程
如何终止一个线程 是使用 thread.stop() 吗? public class ThreadDemo extends Thread{Overridepublic void run() {try {Thread.sleep(10000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("this is demo thread :"Thre…...
上岸!选择你的隐私计算导师!
开放隐私计算 开放隐私计算开放隐私计算OpenMPC是国内第一个且影响力最大的隐私计算开放社区。社区秉承开放共享的精神,专注于隐私计算行业的研究与布道。社区致力于隐私计算技术的传播,愿成为中国 “隐私计算最后一公里的服务区”。183篇原创内容公众号…...
go gin学习记录5
有了前面几节的学习,如果做个简单的web服务端已经可以完成了。 这节来做一下优化。 我们实验了3种SQL写入的方法,但是发现每一种都需要在方法中去做数据库链接的操作,有些重复了。 所以,我们把这部分提取出来,数据库链…...
PyQt5数据库开发2 5.1 QSqlQueryModel
目录 一、Qt窗体设计 1. 新建Qt项目 2. 拷贝4-3的部分组件过来 3. 添加资源文件 4. 创建Action 5. 添加工具栏 6. 创建菜单项 7. 关闭Action的实现 8. 调整布局 8.1 调整两个groupbox的布局 8.3 为窗体设置全局布局 二、代码拷贝和删除 1. 新建项目目录 2. 编译…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
