当前位置: 首页 > news >正文

【算法训练-二叉树 三】【最大深度与直径】求二叉树的最大深度、求二叉树的直径

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【求二叉树的直径】,使用【二叉树】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。

名曲目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

求二叉树的最大深度【EASY】

求二叉树的最大深度

题干

直接粘题干和用例

解题思路

最大深度是所有叶子节点的深度的最大值,深度是指树的根节点到任一叶子节点路径上节点的数量,因此从根节点每次往下一层深度就会加1。因此二叉树的深度就等于根节点这个1层加上左子树和右子树深度的最大值

  1. 终止条件: 当进入叶子节点后,再进入子节点,即为空,没有深度可言,返回0.
  2. 返回值: 每一级按照上述公式,返回两边子树深度的最大值加上本级的深度,即加1.
  3. 本级任务: 每一级的任务就是进入左右子树,求左右子树的深度。

在这里插入图片描述

代码实现

给出代码实现基本档案

基本数据结构二叉树
辅助数据结构
算法递归、DFS
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;/** public class TreeNode {*   int val = 0;*   TreeNode left = null;*   TreeNode right = null;*   public TreeNode(int val) {*     this.val = val;*   }* }*/public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param root TreeNode类* @return int整型*/public int maxDepth (TreeNode root) {// 1 如果只有根节点,返回1if (root == null) {return 0;}// 2 递归获取左子树最大深度int leftMaxLenth = maxDepth(root.left);// 3 递归获取右子树最大深度int rightMaxLenth = maxDepth(root.right);// 4 返回当前最大深度return Math.max(leftMaxLenth, rightMaxLenth) + 1;}
}

复杂度分析

时间复杂度:O(n),其中n为二叉树的节点数,遍历整棵二叉树
空间复杂度:O(n),最坏情况下,二叉树化为链表,递归栈深度最大为n

求二叉树的直径【EASY】

相对于求深度难度有所升级。

题干

直接粘题干和用例

解题思路

依据题意可以得出,直径最大应该是两个叶子节点之间的路径。首先我们知道一条路径的长度为该路径经过的节点数减一,所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到,也就是其两边子树最大深度之和,但需要注意的是,这个节点不一定是根节点,只是直径路径上两个节点的公共节点而已

所以问题就转换成了求两个叶子节点之间最大距离的公共节点

在这里插入图片描述

代码实现

给出代码实现基本档案

基本数据结构二叉树
辅助数据结构
算法迭代
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

 private int maxNodeNum;public int diameterOfBinaryTree(TreeNode root) {// 1 处理异常情况if (root == null) {return 0;}// 2 初始途径节点设置为1maxNodeNum = 1;// 3 递归获取根节点最大深度,过程中求最大直径maxDepth(root);// 4 全部途径节点数-1为最终结果直径return maxNodeNum - 1;}/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param root TreeNode类* @return int整型*/public int maxDepth (TreeNode root) {// 1 如果只有根节点,返回1if (root == null) {return 0;}// 2 递归获取左子树最大深度int leftMaxLenth = maxDepth(root.left);// 3 递归获取右子树最大深度int rightMaxLenth = maxDepth(root.right);// 4 直径为左右最大深度和+1(要算上根节点)int curNodeNum = leftMaxLenth + rightMaxLenth + 1;maxNodeNum = Math.max(maxNodeNum, curNodeNum);return Math.max(leftMaxLenth, rightMaxLenth) + 1;}

复杂度分析

时间复杂度:遍历了整棵树节点,时间复杂度为O(N)
空间复杂度:极端情况下,二叉树退化为链表,递归栈的深度为O(N),空间复杂度为O(N)

拓展知识:二叉树的最大深度与直径

二叉树的直径和最大深度是树结构中两个不同但相关的概念。

  1. 最大深度(Maximum Depth):
    最大深度是指二叉树中从根节点到叶子节点的最长路径的长度。通常,可以使用递归算法来计算最大深度,如下所示的伪代码:
function maxDepth(node):if node is null:return 0leftDepth = maxDepth(node.left)rightDepth = maxDepth(node.right)return max(leftDepth, rightDepth) + 1
  1. 二叉树的直径(Diameter of a Binary Tree):
    二叉树的直径是指二叉树中任意两个节点之间的最长路径的长度这个路径不一定通过根节点。计算二叉树的直径通常需要通过递归来查找,可以使用以下方法:
function diameterOfBinaryTree(root):if root is null:return 0# 计算左子树的最大深度leftDepth = maxDepth(root.left)# 计算右子树的最大深度rightDepth = maxDepth(root.right)# 计算经过根节点的直径rootDiameter = leftDepth + rightDepth# 计算左子树的直径leftDiameter = diameterOfBinaryTree(root.left)# 计算右子树的直径rightDiameter = diameterOfBinaryTree(root.right)# 返回三者中的最大值return max(rootDiameter, leftDiameter, rightDiameter)

请注意,这个算法的时间复杂度较高,因为它在每个节点上都会多次计算最大深度。如果需要优化性能,可以使用动态规划或记忆化搜索来避免重复计算。

相关文章:

【算法训练-二叉树 三】【最大深度与直径】求二叉树的最大深度、求二叉树的直径

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【求二叉树的直径】,使用【二叉树】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件…...

查看linux是centos还是Ubuntu

查看linux是centos还是Ubuntu 命令:cat /etc/os-release...

win10怎么关闭自动更新,这个方法你知道吗?

Windows 10 操作系统自动更新是确保系统安全性和性能的关键功能。然而,有时用户可能希望手动控制更新,因此关闭自动更新可能是一个有用的选项。在本文中,我们将介绍win10怎么关闭自动更新的两种方法,以满足用户不同的需求。 方法1…...

「语音芯片」常见的OTP芯片故障分析

OTP语音芯片是指一次性可编程语音芯片,语音只能烧写一次,适合应用在不需要修改语音、语音长度短的场合,从放音的长度上可以分为20秒、40秒、80秒、170秒、340秒。语音芯片的特点是单芯片方案、价格便宜,适合批量生产,即便是小数量…...

孩子写作业买什么样台灯合适?适合孩子读写台灯推荐

现在孩子的普遍都存在视力问题,而导致孩子近视的原因可能跟光线太强或太弱、不用的用眼习惯、长时间的过度用眼等因素有关,根据数据表明目前中国近视患者人数达到6亿多,其中儿童青少年的视力不良率甚至高达八成,所以在孩子的学习道…...

DBAPI插件开发指南

DBAPI插件开发指南 插件市场 您可以去插件市场下载插件 插件的作用 DBAPI的插件分4类,分别是数据转换插件、缓存插件、告警插件、全局数据转化插件 缓存插件 对执行器结果进行缓存,比如SQL执行器,对查询类SQL,sql查询结果进…...

线程池使用之自定义线程池

目录 一:Java内置线程池原理剖析 二:ThreadPoolExecutor参数详解 三:线程池工作流程总结示意图 四:自定义线程池-参数设计分析 1:核心线程数(corePoolSize) 2:任务队列长度(workQueue) 3:最大线程数(maximumPoolSize) 4:最…...

Puppeteer无头浏览器:开启自动化之门,掌握浏览器世界的无限可能

大概还是入门期,我曾用Puppeteer做爬虫工具以此来绕过某网站的防爬机制。近期有需求要做任意链接网页截图,像这种场景非常适合用Puppeteer完成。无头浏览器我已知的还有Selenium。 完成截图需求踩的最大的坑不是具体的逻辑代码,而是Docker部…...

Ubuntu 23.10/24.04 LTS 放弃默认使用 snap 版 CUPS 打印堆栈

导读Canonical 的开发者、OpenPrinting 的项目负责人 Till Kamppeter 今年 5 月表示,计划在 Ubuntu 23.10(Mantic Minotaur)上默认使用 Snap 版本的 CUPS 打印堆栈。 不过经过数月的测试,官方放弃了这项决定。Ubuntu 23.10&#x…...

Linux CentOS7 history命令

linux查看历史命令可以使用history命令,该命令可以列出所有已键入的命令。 这个命令的作用可以让用户或其他有权限人员,进行审计,查看已录入的命令。 用户所键入的命令作为应保存的信息将记录在文件中,这个文件就是家目录中的一…...

XC5350A 单节锂电池保护芯片 过放2.9V/2.8V/2.4V保护IC

XC5350A产品是一个高集成度的鲤离子/聚合物电池保护解决方案。XC5350A包含先进的功率MOSFET,高精度电压检测电路和延迟电路XC5350A放入一个超小型SOT23-5封装,只有一个外部元件使其成为在电池组有限的空间的理想解决方案。 XC5350A具有包括过充&#xff…...

单片机论文参考:1、基于单片机的电子琴

摘要 随着社会的发展进步,音乐逐渐成为我们生活中很重要的一部分,有人曾说喜欢音乐的人不会向恶。我们都会抽空欣赏世界名曲,作为对精神的洗礼。本论文设计一个基于单片机的简易电子琴。电子琴是现代电子科技与音乐结合的产物,是一…...

Opencv源码解析(2)算法

目录 一,直方图均衡 1,直方图统计 2,灰度变换 3,直方图均衡 二,可分离滤波器 1,可分离滤波器的工厂 2,ocvSepFilter、sepFilter2D 3,Sobel 三,相位相关法 phase…...

让Mac菜单栏变得更加美观整洁——Bartender 5

Bartender 5是一款Mac电脑上的菜单栏图标管理软件,能够帮助您把菜单栏上的图标整理得更加美观、整洁和易于使用。如果您的菜单栏上充斥着许多图标,导致视觉上很不舒适和疲劳,那么Bartender 5就是解决这一问题的最佳选择! Bartend…...

服务器迁移:无缝过渡指南

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

安卓开发中ViewBinding的使用

在安卓开发中,ViewBing 的作用就是简化 findViewById() 代码的写法。 看看下面的替换: etbinding.text //etfindViewById(R.id.text) 下面就看看怎么用的, 首先,打开app模块的build.gradle,然后添加如下代码&…...

【初阶数据结构】树(tree)的基本概念——C语言

目录 一、树(tree) 1.1树的概念及结构 1.2树的相关概念 1.3树的表示 1.4树在实际中的运用(表示文件系统的目录树结构) 二、二叉树的概念及结构 2.1二叉树的概念 2.2现实中真正的二叉树 2.3特殊的二叉树 2.4二叉树的性质…...

二叉树知识点

1.霍夫曼编码 这位作者写的很清楚 哈夫曼编码详解——图解真能看了秒懂_已知字符集abcdef,若各字符出现的次数_Young_IT的博客-CSDN博客 2.满二叉树与完全二叉树 满二叉树是指每层数量是pow(2,n-1)个节点,总节点数是pow(2,n)-1; 而完全二叉树是指最后一层不一定…...

Day69:283. 移动零、11. 盛最多水的容器、42. 接雨水

283. 移动零 leetcode链接:https://leetcode.cn/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操作。示例 1:…...

tensorrt的安装和使用

安装 提前安装好 CUDA 和 CUDNN,登录 NVIDIA 官方网站下载和主机 CUDA 版本适配的 TensorRT 压缩包即可。 以 CUDA 版本是 10.2 为例,选择适配 CUDA 10.2 的 tar 包,然后执行类似如下的命令安装并测试: #安装c版本 cd /the/pat…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...