LeetCode //C - 200. Number of Islands
200. Number of Islands
Given an m x n 2D binary grid grid which represents a map of *‘1’*s (land) and *‘0’*s (water), return the number of islands.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example 1:
Input: grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
Output: 1
Example 2:
Input: grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
Output: 3
Constraints:
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 300
- grid[i][j] is ‘0’ or ‘1’.
From: LeetCode
Link: 200. Number of Islands
Solution:
Ideas:
1. Initialize: The numIslands function initializes the count of islands to zero. It also determines the dimensions of the grid, m (number of rows) and n (number of columns).
2. Iterate through the Grid: The code then iterates over each cell of the grid. If the current cell is ‘1’, it indicates a part of an island that hasn’t been explored yet.
3. DFS to Explore the Island: When a ‘1’ is found, we use the dfs function to explore the entire island. The idea is that once we find a ‘1’, we want to explore all its neighboring cells (up, down, left, and right) to see if they are also part of the same island. If they are, we continue the exploration recursively.
- In the dfs function, if the current cell is out-of-bounds, or if it is water (i.e., ‘0’), we return immediately without further exploration.
- If the current cell is ‘1’, we mark it as visited by changing its value to ‘0’. This ensures that we don’t count the same part of an island more than once.
- We then recursively call dfs on the neighboring cells to continue exploring the island.
4. Counting the Islands: Each time we initiate a DFS exploration from the numIslands function (i.e., every time we find an unexplored ‘1’), we increment our island count by 1. By the end of the iteration over the grid, we would have explored and counted all distinct islands.
5. Return the Count: Finally, numIslands returns the count of islands.
Code:
void dfs(char** grid, int i, int j, int m, int n) {if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == '0') {return;}grid[i][j] = '0';dfs(grid, i - 1, j, m, n); // updfs(grid, i + 1, j, m, n); // downdfs(grid, i, j - 1, m, n); // leftdfs(grid, i, j + 1, m, n); // right
}int numIslands(char** grid, int gridSize, int* gridColSize) {if (grid == NULL || gridSize == 0 || gridColSize == NULL) {return 0;}int m = gridSize;int n = gridColSize[0];int islandCount = 0;for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (grid[i][j] == '1') {islandCount++;dfs(grid, i, j, m, n);}}}return islandCount;
}
相关文章:
LeetCode //C - 200. Number of Islands
200. Number of Islands Given an m x n 2D binary grid grid which represents a map of *‘1’*s (land) and *‘0’*s (water), return the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically…...

使用Python构建强大的网络爬虫
介绍 网络爬虫是从网站收集数据的强大技术,而Python是这项任务中最流行的语言之一。然而,构建一个强大的网络爬虫不仅仅涉及到获取网页并解析其HTML。在本文中,我们将为您介绍创建一个网络爬虫的过程,这个爬虫不仅可以获取和保存网…...

图像处理之《基于语义对象轮廓自动生成的生成隐写术》论文精读
一、相关知识 首先我们需要了解传统隐写和生成式隐写的基本过程和区别。传统隐写需要选定一幅封面图像,然后使用某种隐写算法比如LSB、PVD、DCT等对像素进行修改将秘密嵌入到封面图像中得到含密图像,通过信道传输后再利用算法的逆过程提出秘密信息。而生…...
Java 字节流
一、输入输出流 输入输出 ------- 读写文件 输入 ------- 从文件中获取数据到自己的程序中,接收处理【读】 输出 ------- 将自己程序中处理好的数据保存到文件中【写】 流 ------- 数据移动的轨迹 二、流的分类 按照数据的移动轨迹分为:输入流 输出流…...

华硕电脑怎么录屏?分享实用录制经验!
“华硕电脑怎么录屏呀,刚买的笔记本电脑,是华硕的,自我感觉挺好用的,但是不知道怎么录屏,最近刚好要录一个教程,怎么都找不到在哪里录制,有人能教教我吗?” 随着电脑技术的不断发展…...
python学习--python的异常处理机制
try…except try:n1int(input(请输入一个整数))n2int(input(请输入另一个整数))resultn1/n2print(结果为,result) except ZeroDivisionError: print(除数不能为0)try…except…else 如果try块中没有抛出异常,则执行else块,如果try中抛出异常࿰…...

nacos+Dubbo整合快速入门
官网:Nacos Spring Boot 快速开始 下载下载链接启动:进入bin目录,startup.cmd -m standalone引入依赖 <dependency><groupId>org.apache.dubbo</groupId><artifactId>dubbo</artifactId><version>3.0.9…...

QT实现钟表
1、 头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QPaintEvent> //绘制事件类 #include <QDebug> //信息调试类 #include <QPainter> //画家类 #include <QTimerEve…...

准备我们心爱的IDEA写Jsp
JSP学习 一、准备我们心爱的IDEA new一个项目:New Project --> Next -->Next -->Finsh 二、配置好服务器Tomcat-9.0.30 1.> 在WEB-INF下创建一个Lib包 将jsp-api.jar复制进去,并使其生效 未生效前: 生效过程: 2.>…...

将近 5 万字讲解 Python Django 框架详细知识点(更新中)
Django 框架基本概述 Django 是一个开源的 Web 应用后端框架,由 Python 编写。它采用了 MVC 的软件设计模式,即模型(Model)、视图(View)和控制器(Controller)。在 Django 框架中&am…...

Arcgis提取每个像元的多波段反射率值
Arcgis提取每个像元的多波段反射率值 数据预处理 数据预处理阶段需要对遥感图像进行编辑传感器参数、辐射定标、大气校正、正射校正,具体流程见该文章 裁剪研究区 对于ENVI处理得到的tiff影像,虽然是经过裁剪了,但是还存在黑色的背景值&a…...
JavaScript面试题整理(一)
数据类型篇 1、JavaScript有哪些数据类型,它们的区别是什么? 基本数据类型:number、string、boolean、undefined、NaN、BigInt、Symbol 引入数据类型:Object NaN是JS中的特殊值,表示非数字,NaN不是数字…...

数据结构:树和二叉树之-堆排列 (万字详解)
目录 树概念及结构 1.1树的概念 1.2树的表示 编辑2.二叉树概念及结构 2.1概念 2.2数据结构中的二叉树:编辑 2.3特殊的二叉树: 编辑 2.4 二叉树的存储结构 2.4.1 顺序存储: 2.4.2 链式存储: 二叉树的实现及大小堆…...

爬虫入门基础:深入解析HTTP协议的工作过程
目录 一、HTTP协议简介 二、HTTP协议的工作过程 三、请求方法与常见用途 四、请求头与常见字段 五、状态码与常见含义 六、进阶话题和注意事项 总结 在如今这个数字化时代,互联网已经成为我们获取信息、交流和娱乐的主要渠道。而在互联网中,HTTP协…...

k8备份与恢复-Velero
简介 Velero 是一款可以安全的备份、恢复和迁移 Kubernetes 集群资源和持久卷等资源的备份恢复软件。 Velero 实现的 kubernetes 资源备份能力,可以轻松实现 Kubernetes 集群的数据备份和恢复、复制 kubernetes 集群资源到其他kubernetes 集群或者快速复制生产环境…...

基于Python开发的火车票分析助手(源码+可执行程序+程序配置说明书+程序使用说明书)
一、项目简介 本项目是一套基于Python开发的火车票分析助手,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。 包含:项目源码、项目文档等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,…...

旺店通·企业奇门与金蝶云星空对接集成订单查询连通销售订单新增(旺店通销售-金蝶销售订单-小红书)
旺店通企业奇门与金蝶云星空对接集成订单查询连通销售订单新增(旺店通销售-金蝶销售订单-小红书) 接通系统:旺店通企业奇门 慧策最先以旺店通ERP切入商家核心管理痛点——订单管理,之后围绕电商经营管理中的核心管理诉求,先后布局流量获取、会…...

卡尔曼滤波应用在数据处理方面的应用
卡尔曼滤波应用到交通领域 滤波器介绍核心思想核心公式一维卡尔曼滤波器示例导入所需的库 滤波器介绍 卡尔曼滤波器是一种用于估计系统状态的数学方法,它以卡尔曼核心思想为基础,广泛应用于估计动态系统的状态和滤除测量中的噪声。以下是卡尔曼滤波器的核…...

PROFIBUS主站转ETHERCAT协议网关
产品介绍 JM-DPM-ECT是自主研发的一款PROFIBUS-DP主站功能的通讯网关。该产品主要功能是将各种PROFIBUS-DP从站接入到ETHERCAT网络中。 本网关连接到PROFIBUS总线中作为主站使用,连接到ETHERCAT总线中作为从站使用。 产品参数 技术参数 ◆ PROFIBUS-DP/V0 协议符…...

Vue路由的使用及node.js下载安装和环境搭建
目录 一、Vue路由 1.1 简介 ( 1 ) 特点 ( 2 ) 作用 1.2 实例 ( 1 ) 引入 ( 2 ) 组件 ( 3 ) 关系 ( 4 ) 路由 ( 5 ) 事件 ( 6 ) 锚点 二、nodeJS 2.1 下载 2.2 安装 2.3 环境搭建 新增 添加 测试 配置 运行 一、Vue路由 1.1 简介 Vue路由是Vue.…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...

python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...