当前位置: 首页 > news >正文

C# Onnx Yolov8 Pose 姿态识别

效果

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;PoseResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 56];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();PoseResult result_pro = new PoseResult(factors);result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8n-pose.onnx";classer_path = startupPath + "\\yolov8-detect-lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}

Demo下载

相关文章:

C# Onnx Yolov8 Pose 姿态识别

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...

7.algorithm2e中while怎么使用

algorithm2e中while怎么使用 在 algorithm2e 宏包中&#xff0c;要使用 while 循环&#xff0c;您可以使用 \While 和 \EndWhile 命令来定义循环的开始和结束。以下是如何使用 while 循环的示例&#xff1a; \documentclass{article} \usepackage[linesnumbered,boxed]{algorit…...

Flask狼书笔记 | 08_个人博客(下)

文章目录 8 个人博客8.4 初始化博客8.5 使用Flask-Login管理用户认证8.6 CSRFProtect实现CSRF保护8.7 编写博客后台小结 8 个人博客 8.4 初始化博客 1、安全存储密码 密码不要以明文的形式直接存储在数据库中&#xff0c;以防被攻击者盗取、泄露。一般的做法是&#xff0c;不…...

机器学习第十课--提升树

一.Bagging与Boosting的区别 在上一章里我们学习了一个集成模型叫作随机森林&#xff0c;而且也了解到随机森林属于Bagging的成员。本节我们重点来学习一下另外一种集成模型叫作Boosting。首先回顾一下什么叫Bagging? 比如在随机森林里&#xff0c;针对于样本数据&#xff0c;…...

react scss.modules中使用iconfont

全局引入详见全局引入scss 全局的scss文件中引入iconfont.css use "../font/iconfont.css"; 然后就可以正常使用啦...

使用Jmeter+ant进行接口自动化测试(数据驱动)

最近在做接口测试&#xff0c;因为公司有使用jmeter做接口测试的相关培训资料&#xff0c;所以还是先选择使用jmeter来批量管理接口&#xff0c;进行自动化测试。话不多说&#xff0c;进入正题&#xff1a; 1.使用csv文件保存接口测试用例&#xff0c;方便后期对接口进行维护&…...

可视化图表组件之股票数据分析应用

股市是市场经济的必然产物&#xff0c;在一个国家的金融领域之中有着举足轻重的地位。在过去&#xff0c;人们对于市场走势的把握主要依赖于经验和直觉&#xff0c;往往容易受到主观因素的影响&#xff0c;导致决策上出现偏差。如今&#xff0c;通过数据可视化呈现&#xff0c;…...

STM32 ~ GPIO不同模式之间的区别与实现原理

GPIO全称General Purpose Input Output &#xff0c;即通用输入/输出。其实GPIO的本质就是芯片的一个引脚&#xff0c;通常在ARM中所有的I/O都是通用的。不过&#xff0c;由于每个开发板上都会设计不同的外围电路&#xff0c;这就造成了GPIO的功能可能有所不同。大部分GPIO都是…...

dvwa靶场通关(十二)

第十二关&#xff1a;Stored Cross Site Scripting (XSS)&#xff08;存储型xss&#xff09; low 这一关没有任何防护&#xff0c;直接输入弹窗代码 弹窗成功 medium 先试试上面的代码看看&#xff0c;有没有什么防护 发现我们的script标签不见了&#xff0c;应该是被过滤掉…...

【shell学习】企业运维工作中常用的shell脚本

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》&#xff1a;python零基础入门学习 《python运维脚本》&#xff1a; python运维脚本实践 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8…...

对权限的理解和使用

目录 一&#xff1a;用户权限&#xff1a; ★su命令 ★sudo命令 二&#xff1a;文件权限 ★文件的类型权限 ★文件夹的权限的使用 ▲文件夹的可读权限&#xff1a; ▲文件夹的可写权限&#xff1a; ▲文件夹的可执行权限&#xff1a; ★权限的修改操作 ▲chmod命令 ★对于文件的…...

MySQL 5.7 通过数据库idb文件快速导入至另一台数据库

前言 数据库有一张表里有1000万条数据&#xff0c;通过sql导入会非常缓慢&#xff0c;如果数据库版本相同&#xff0c;迁移表可以通过复制表idb文件实现快速迁移。 一、系统环境 原服务器系统&#xff1a;centos7.4 原服务器数据库版本&#xff1a;MySQL5.7.21 新服务器系统…...

第一章 计算机网络基础

目录 1.1 网络体系结构 1.1.1 OSI/RM七层参考模型 1.1.2 OSI/RM和TCP/IP模型的比较 1.1.3 五层协议的体系结构 1.1.4 计算机1向计算机2发送数据过程 1.1.5 TCP/IP体系结构的具体实现 1.2 网络设备概述 1.2.1 互联设备与OSI的对应关系 1.2.2 集线器(HUB) 1.2.3 网桥(B…...

本地电脑搭建SFTP服务器,并实现公网访问

本地电脑搭建SFTP服务器&#xff0c;并实现公网访问 文章目录 本地电脑搭建SFTP服务器&#xff0c;并实现公网访问1. 搭建SFTP服务器1.1 下载 freesshd 服务器软件1.3 启动SFTP服务1.4 添加用户1.5 保存所有配置 2. 安装SFTP客户端FileZilla测试2.1 配置一个本地SFTP站点2.2 内…...

易基因直播预告|细菌微生物基因表达调控表观研究易基因科技

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 DNA甲基化是在半个多世纪前在细菌中发现的。DNA碱基可以作为一个表观遗传调节因子——也就是说&#xff0c;它可以赋予相同的基因序列不同的和可逆的调控状态。在真核生物中&#xff0c;…...

Flask在线部署ChatGLM2大模型

1、 拉取镜像 docker pull swr.cn-central-221.ovaijisuan.com/mindformers/mindformers_dev_mindspore_2_0:mindformers_0.6.0dev_20230616_py39_372、 新建docker.sh -p 8000:8000 是宿主机映射到镜像8000端口 如果添加–ipchost --nethost 会和-p冲突 # --device用于控制…...

浅谈Vue3——父子组件传值

引言 Vue.js是一款流行的JavaScript框架&#xff0c;用于构建用户界面。它提供了一种简洁、灵活的方式来管理和渲染数据。在Vue3中&#xff0c;父子组件之间的数据传递是一个常见的需求。本文将介绍如何在Vue3中传递对象&#xff0c;并且在子组件中访问和修改父组件对象中的属…...

Wolfram语言之父:ChatGPT到底能做什么? | 阿Q送书第六期

文章目录 那么&#xff0c;ChatGPT到底在做什么&#xff1f;它为什么能做到这些&#xff1f;前方的路为ChatGPT赋予“思想”留言提前获赠书 人类语言及其背后的思维模式在结构上比我们想象的更简单、更“符合规律”。 ChatGPT大火&#xff0c;甚至已经开始改变人类的工作和思考…...

antd a-list 添加分页

会分为三部分 template <a-list item-layout"horizontal" :data-source"localData" :pagination"{...paginationProps,current:currentPage}"><a-list-item slot"renderItem" slot-scope"item"><a-list-ite…...

MySQL注入绕安全狗脚本 -- MySQLByPassForSafeDog,以及端口爆破工具 -- PortBrute配置使用

工具介绍 此Tamper仅仅适用于MySQL数据库&#xff0c;在SQLMap使用过程中添加参数–tamperMySQLByPassForSafeDog。 安装与使用 1、安装网站安全狗Apache最新版 2、启用安全狗&#xff0c;不加MySQLByPassForSafeDog绕狗Tamper: python sqlmap.py -u "http://192.168.…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

Redis上篇--知识点总结

Redis上篇–解析 本文大部分知识整理自网上&#xff0c;在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库&#xff0c;Redis 的键值对中的 key 就是字符串对象&#xff0c;而 val…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...