C# Onnx Yolov8 Pose 姿态识别
效果

项目

代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;PoseResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 56];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();PoseResult result_pro = new PoseResult(factors);result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8n-pose.onnx";classer_path = startupPath + "\\yolov8-detect-lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}
Demo下载
相关文章:
C# Onnx Yolov8 Pose 姿态识别
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...
7.algorithm2e中while怎么使用
algorithm2e中while怎么使用 在 algorithm2e 宏包中,要使用 while 循环,您可以使用 \While 和 \EndWhile 命令来定义循环的开始和结束。以下是如何使用 while 循环的示例: \documentclass{article} \usepackage[linesnumbered,boxed]{algorit…...
Flask狼书笔记 | 08_个人博客(下)
文章目录 8 个人博客8.4 初始化博客8.5 使用Flask-Login管理用户认证8.6 CSRFProtect实现CSRF保护8.7 编写博客后台小结 8 个人博客 8.4 初始化博客 1、安全存储密码 密码不要以明文的形式直接存储在数据库中,以防被攻击者盗取、泄露。一般的做法是,不…...
机器学习第十课--提升树
一.Bagging与Boosting的区别 在上一章里我们学习了一个集成模型叫作随机森林,而且也了解到随机森林属于Bagging的成员。本节我们重点来学习一下另外一种集成模型叫作Boosting。首先回顾一下什么叫Bagging? 比如在随机森林里,针对于样本数据,…...
react scss.modules中使用iconfont
全局引入详见全局引入scss 全局的scss文件中引入iconfont.css use "../font/iconfont.css"; 然后就可以正常使用啦...
使用Jmeter+ant进行接口自动化测试(数据驱动)
最近在做接口测试,因为公司有使用jmeter做接口测试的相关培训资料,所以还是先选择使用jmeter来批量管理接口,进行自动化测试。话不多说,进入正题: 1.使用csv文件保存接口测试用例,方便后期对接口进行维护&…...
可视化图表组件之股票数据分析应用
股市是市场经济的必然产物,在一个国家的金融领域之中有着举足轻重的地位。在过去,人们对于市场走势的把握主要依赖于经验和直觉,往往容易受到主观因素的影响,导致决策上出现偏差。如今,通过数据可视化呈现,…...
STM32 ~ GPIO不同模式之间的区别与实现原理
GPIO全称General Purpose Input Output ,即通用输入/输出。其实GPIO的本质就是芯片的一个引脚,通常在ARM中所有的I/O都是通用的。不过,由于每个开发板上都会设计不同的外围电路,这就造成了GPIO的功能可能有所不同。大部分GPIO都是…...
dvwa靶场通关(十二)
第十二关:Stored Cross Site Scripting (XSS)(存储型xss) low 这一关没有任何防护,直接输入弹窗代码 弹窗成功 medium 先试试上面的代码看看,有没有什么防护 发现我们的script标签不见了,应该是被过滤掉…...
【shell学习】企业运维工作中常用的shell脚本
本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...
对权限的理解和使用
目录 一:用户权限: ★su命令 ★sudo命令 二:文件权限 ★文件的类型权限 ★文件夹的权限的使用 ▲文件夹的可读权限: ▲文件夹的可写权限: ▲文件夹的可执行权限: ★权限的修改操作 ▲chmod命令 ★对于文件的…...
MySQL 5.7 通过数据库idb文件快速导入至另一台数据库
前言 数据库有一张表里有1000万条数据,通过sql导入会非常缓慢,如果数据库版本相同,迁移表可以通过复制表idb文件实现快速迁移。 一、系统环境 原服务器系统:centos7.4 原服务器数据库版本:MySQL5.7.21 新服务器系统…...
第一章 计算机网络基础
目录 1.1 网络体系结构 1.1.1 OSI/RM七层参考模型 1.1.2 OSI/RM和TCP/IP模型的比较 1.1.3 五层协议的体系结构 1.1.4 计算机1向计算机2发送数据过程 1.1.5 TCP/IP体系结构的具体实现 1.2 网络设备概述 1.2.1 互联设备与OSI的对应关系 1.2.2 集线器(HUB) 1.2.3 网桥(B…...
本地电脑搭建SFTP服务器,并实现公网访问
本地电脑搭建SFTP服务器,并实现公网访问 文章目录 本地电脑搭建SFTP服务器,并实现公网访问1. 搭建SFTP服务器1.1 下载 freesshd 服务器软件1.3 启动SFTP服务1.4 添加用户1.5 保存所有配置 2. 安装SFTP客户端FileZilla测试2.1 配置一个本地SFTP站点2.2 内…...
易基因直播预告|细菌微生物基因表达调控表观研究易基因科技
大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 DNA甲基化是在半个多世纪前在细菌中发现的。DNA碱基可以作为一个表观遗传调节因子——也就是说,它可以赋予相同的基因序列不同的和可逆的调控状态。在真核生物中,…...
Flask在线部署ChatGLM2大模型
1、 拉取镜像 docker pull swr.cn-central-221.ovaijisuan.com/mindformers/mindformers_dev_mindspore_2_0:mindformers_0.6.0dev_20230616_py39_372、 新建docker.sh -p 8000:8000 是宿主机映射到镜像8000端口 如果添加–ipchost --nethost 会和-p冲突 # --device用于控制…...
浅谈Vue3——父子组件传值
引言 Vue.js是一款流行的JavaScript框架,用于构建用户界面。它提供了一种简洁、灵活的方式来管理和渲染数据。在Vue3中,父子组件之间的数据传递是一个常见的需求。本文将介绍如何在Vue3中传递对象,并且在子组件中访问和修改父组件对象中的属…...
Wolfram语言之父:ChatGPT到底能做什么? | 阿Q送书第六期
文章目录 那么,ChatGPT到底在做什么?它为什么能做到这些?前方的路为ChatGPT赋予“思想”留言提前获赠书 人类语言及其背后的思维模式在结构上比我们想象的更简单、更“符合规律”。 ChatGPT大火,甚至已经开始改变人类的工作和思考…...
antd a-list 添加分页
会分为三部分 template <a-list item-layout"horizontal" :data-source"localData" :pagination"{...paginationProps,current:currentPage}"><a-list-item slot"renderItem" slot-scope"item"><a-list-ite…...
MySQL注入绕安全狗脚本 -- MySQLByPassForSafeDog,以及端口爆破工具 -- PortBrute配置使用
工具介绍 此Tamper仅仅适用于MySQL数据库,在SQLMap使用过程中添加参数–tamperMySQLByPassForSafeDog。 安装与使用 1、安装网站安全狗Apache最新版 2、启用安全狗,不加MySQLByPassForSafeDog绕狗Tamper: python sqlmap.py -u "http://192.168.…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
