当前位置: 首页 > news >正文

轮换对称性

二重积分

  1. 普通对称性–D关于 y = x y=x y=x对称:
    ∬ D f ( x , y ) d σ = { 2 ∬ D 1 f ( x , y ) d σ f ( x , y ) = f ( y , x ) 0 f ( x , y ) = − f ( y , x ) \iint_{D}f(x,y)d\sigma=\begin{cases} 2\iint_{D_1}f(x,y)d\sigma\ \ \ \ \ \ f(x,y)=f(y,x) \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f(x,y)=-f(y,x) \end{cases} Df(x,y)dσ={2D1f(x,y)dσ      f(x,y)=f(y,x)0                               f(x,y)=f(y,x)
    其中 D 1 D_1 D1 D D D关于 y = x y=x y=x对称的半个部分
  2. 轮换对称性:
    在直角坐标系中,若将区域D中的x,y对调后,D不变,则有
    I = ∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y I = \iint_{D}f(x,y)dxdy=\iint_{D}f(y,x)dxdy I=Df(x,y)dxdy=Df(y,x)dxdy
    不管积分区域对不对称,由于积分与变量名无关,因此天然有 ∬ D x y f ( x , y ) d x d y = ∬ D y x f ( y , x ) d y d x \iint_{D_{xy}}f(x,y)dxdy=\iint_{D_{yx}}f(y,x)dydx Dxyf(x,y)dxdy=Dyxf(y,x)dydx。而这两个积分因为坐标系不一致,不可以做运算,而对称轮换性的原理是字母对调后再相加减很简单,因此若要让两个积分做运算,必然要有 D x y = D y x D_{xy}=D_{yx} Dxy=Dyx,因此需要积分区域D关于 y = x y=x y=x对称
  3. 二者区别:
    • 积分函数的区别
      • 普通对称性是对调之后若 f ( x , y ) = f ( y , x ) f(x,y)=f(y,x) f(x,y)=f(y,x)则为二倍,若 f ( x , y ) = − f ( y , x ) f(x,y)=-f(y,x) f(x,y)=f(y,x)则为0
      • 轮换对称性是对调之后 f ( x , y ) f(x,y) f(x,y) f ( y , x ) f(y,x) f(y,x)的关系并不重要,它俩表达式不一定一样。情况往往是二者表达式都比较复杂,但加起来比较简单,即 f ( x , y ) + f ( y , x ) = a f(x,y)+f(y,x)=a f(x,y)+f(y,x)=a
    • 积分区域的区别
      • 普通对称性的积分区域D关于 y = x y=x y=x对称
      • 轮换对称性的积分区域满足的特征为:将 x , y x,y x,y对调后,积分区域D不变,这也需要区域D关于 y = x y=x y=x对称
    • 整体来说,普通对称性中的关于 y = x y=x y=x对称的条件强度要比轮换对称性高得多。因为二者都要积分区域关于 y = x y=x y=x对称,前者还需要x、y对调后的函数之间有关系,而后者的满足条件就到此为止了。
  4. 举例:如下图就是轮换对称性请添加图片描述

相关文章:

轮换对称性

二重积分 普通对称性–D关于 y x yx yx对称: ∬ D f ( x , y ) d σ { 2 ∬ D 1 f ( x , y ) d σ f ( x , y ) f ( y , x ) 0 f ( x , y ) − f ( y , x ) \iint_{D}f(x,y)d\sigma\begin{cases} 2\iint_{D_1}f(x,y)d\sigma\ \ \ \ \ \ f(x,y)f(y,x) \\ 0 \ \…...

【MySQL基础】--- 约束

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【MySQL学习专栏】🎈 本专栏旨在分享学习MySQL的一点学习心得,欢迎大家在评论区讨论💌 目录 一、什么…...

ROS2 的行为树 — 第 1 部分:解锁高级机器人决策和控制

一、说明 在复杂而迷人的机器人世界中,行为树(BT)已成为决策过程中不可或缺的一部分。它们提供了一种结构化、模块化和高效的方法来对机器人的行为进行编程。BT起源于视频游戏行业,用于控制非玩家角色,他们在机器人领域…...

kafka事务的详解

一 kafka事务的机制 1.1 kafka的事务机制 通过事务机制,KAFKA 可以实现对多个 topic 的多个 partition 的原子性的写入,即处于同一个事务内的所有消息,不管最终需要落地到哪个 topic 的哪个 partition, 最终结果都是要么全部写成功&#xf…...

Flutter Fair逻辑动态化架构设计与实现

本文的核心内容包括: 数据逻辑处理布局中的逻辑处理Flutter类型数据处理一、数据逻辑处理 我们接触的每一个Flutter界面,大多由布局和逻辑相关的代码组成。如Flutter初始工程的Counting Demo的代码: class _MyHomePageState extends State<MyHomePage> {// 变量 int…...

【每日一题】74. 搜索二维矩阵

74. 搜索二维矩阵 - 力扣&#xff08;LeetCode&#xff09; 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返…...

软件测试进大厂,拿高薪,怎么做?看这里!

有些同学大学专业不对口&#xff0c;但有想进大厂想拿高薪心&#xff0c;只要你有想法&#xff0c;那就一定有实现的方法。 俗话说&#xff1a;“世间无难事&#xff0c;只怕有心人”。仔细思索一下&#xff0c;哪家大厂能缺软件测试这一重要职位。相对大学所学专业而言&#…...

【读书笔记】基于世界500强的高薪实战Kubernetes课程

第1章 课程简介&&自我介绍 1-1 自我介绍 1-2 课程大纲内容介绍 1-3 课程更新通知 第2章 K8s必备知识-Docker容器基础入门 2-1 课程介绍 2-2 docker容器介绍 2-3 docker优缺点 2-4 安装和配置docker 2-5 修改内核参数 2-6 配置镜像加速器 2-7 配置常用镜像加…...

【Java 基础篇】Java并发包详解

多线程编程是Java开发中一个重要的方面&#xff0c;它能够提高程序的性能和响应能力。然而&#xff0c;多线程编程也伴随着一系列的挑战&#xff0c;如线程安全、死锁、性能问题等。为了解决这些问题&#xff0c;Java提供了一套强大的并发包。本文将详细介绍Java并发包的各个组…...

MYSQL存储引擎基础知识介绍

下面重点介绍几种常用的存储引擎,并对比各个存储引擎之间的区别&#xff0c;以帮助读者理解 不同存储引擎的使用方式。 MyISAM MyISAM是 MySQL的默认存储引擎。MyISAM不支持事务、也不支持外键&#xff0c;其优势是访 问的速度快&#xff0c;对事务完整性没有要求或者以 SEL…...

vue学习之element-ui组件集成

1. element-ui 链接 https://element.eleme.cn/#/zh-CN 2. element-ui 安装 cnpm install element-ui3. 创建项目 https://blog.csdn.net/qq_36940806/article/details/132921688?spm=1001.2014.3001.5502 4. 引入element库 /src/main.js 引入 element-uiimport Vue from…...

如何通过百度SEO优化提升网站排名(掌握基础概念,实现有效优化)

随着互联网的发展&#xff0c;搜索引擎优化&#xff08;SEO&#xff09;成为了网站优化中不可或缺的一部分。在中国&#xff0c;百度搜索引擎占据着主导地位&#xff0c;因此掌握百度SEO概念和优化技巧对网站的排名和曝光非常重要。 百度SEO排名的6个有效方法&#xff1a; 首…...

Golang 字符串

目录 1. Golang 字符串1.1. 基础概念1.2. 字符串编码1.3. 遍历字符串1.4. 类型转换1.5. 总结1.6. String Concatenation (字符串连接)1.6.1. Using the operator1.6.2. Using the operator1.6.3. Using the Join method1.6.4. Using Sprintf method1.6.5. Using Go string Bu…...

python应用中使用了multiprocessing多进程,使用pyinstaller打包出来的程序可能产生多个窗口

问题现象 我用pyside&#xff08;类似pyqt&#xff09;开发了一个应用程序。直接使用pycharm运行&#xff0c;一切都正常。但当我使用pyinstaller将它打包之后&#xff0c;再去运运行&#xff0c;发现窗口总是产生多个。 问题分析 直接运行没有问题&#xff0c;那么问题肯定…...

数据结构与算法——13.队列的拓展

这篇文章主要讲一下双端队列&#xff0c;优先队列&#xff0c;阻塞队列等队列的拓展内容。 目录 1.队列拓展概述 2.双端队列的链表实现 3.双端队列的数组实现 4.优先队列无序数组实现 5.阻塞队列 6.总结 1.队列拓展概述 首先来看一张图&#xff0c;来大致了解一下他们的…...

机器学习入门教学——损失函数(交叉熵法)

1、前言 我们在训练神经网络时&#xff0c;最常用到的方法就是梯度下降法。在了解梯度下降法前&#xff0c;我们需要了解什么是损失(代价)函数。所谓求的梯度&#xff0c;就是损失函数的梯度。如果不知道什么是梯度下降的&#xff0c;可以看一下这篇文章&#xff1a;机器学习入…...

pytest一些常见的插件

Pytest拥有丰富的插件架构&#xff0c;超过800个以上的外部插件和活跃的社区&#xff0c;在PyPI项目中以“ pytest- *”为标识。 本篇将列举github标星超过两百的一些插件进行实战演示。 插件库地址&#xff1a;http://plugincompat.herokuapp.com/ 1、pytest-html&#xff1…...

基于51单片机多路DTH11温湿度检测控制系统

一、系统方案 1、本设计采用51单片机作为主控器。 2、DHT11采集温度度&#xff0c;支持3路温度度&#xff0c;液晶1602显示。 3、按键设置报警阀值。 4、系统声光报警。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 //初始化LCD*********…...

宝塔重装注意事项

欢迎关注我的公众号&#xff1a;夜说猫&#xff0c;让一个贫穷的程序员不靠打代码也能吃饭~ 前言 宝塔8.0版本&#xff0c;宝塔卸载重装&#xff0c;或者重装Linux系统后重新安装宝塔也适用。 不能上来直接就执行安装宝塔脚本&#xff0c;除非之前没有安装过宝塔。 步骤 1、…...

【MySQL】 MySQL的增删改查(进阶)--壹

文章目录 &#x1f6eb;数据库约束&#x1f334;约束类型&#x1f38b;NOT NULL约束&#x1f38d;UNIQUE&#xff1a;唯一约束&#x1f333;DEFAULT&#xff1a;默认值约束&#x1f384;PRIMARY KEY&#xff1a;主键约束&#x1f340;FOREIGN KEY&#xff1a;外键约束&#x1f…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...