当前位置: 首页 > news >正文

【ComfyUI】安装 之 window版

文章目录

  • 序言
  • 步骤
    • 下载comfyUI
    • 配置大模型和vae
    • 下载依赖组件
    • 启动
  • 生成图片
    • 解决办法

序言

由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。

故也就有个今天的猪脚:Comfyui

步骤

  1. 下载comfyui项目
  2. 配置大模型和vae
  3. 下载依赖组件
  4. 启动

下载comfyUI

官网地址:https://github.com/comfyanonymous/ComfyUI

将项目下载到自己喜欢的目录下,下面是我的:

yutao@yutao MINGW64 /e/openai/project
$ git clone https://github.com/comfyanonymous/ComfyUI.git

配置大模型和vae

  1. ComfyUI\models\checkpoints中放大模型文件
  2. ComfyUI\models\vae中放vae文件。

但是,我们学stable diffusion基本都是从stable diffusion webui开始的,所以我们其实不需要再额外的下载,checkpoint和vae,而是共用他们。

ComfyUI的作者提供了配置方法:

  1. 修改extra_model_paths.yaml.example文件重命名为:extra_model_paths.yaml
  2. 打开文件,将里面的base_path进行修改:
    以下是我的stable-diffusion-webui的路径
a111:base_path: E:\openai\project\stable-diffusion-webui

保存退出。

下载依赖组件

在ComfyUI中调出命令行(将文件夹路径上敲cmd,回车即可)中执行:

E:\openai\project\ComfyUI>pip install -r requirements.txt

就会开始下载所需的依赖组件。

启动

命令:python main.py

E:\openai\project\ComfyUI>python main.py

在这里插入图片描述

浏览器访问地址:http://127.0.0.1:8188

最左边,因为我之前玩stable diffusion时候已经下载好了guofeng3大模型。所以load checkpoint 里面我显示的是guofeng3.

大模型,我下载的是guofeng3。
放到models/checkpoints文件夹里,例如:E:\openai\project\ComfyUI\models\checkpoints

在这里插入图片描述

生成图片

因为默认参数就可以生成一个花瓶,点击右上角的Queue Prompt
在这里插入图片描述

但是我的电脑总是不是那么顺利。

详细描述文章:【ComfyUI】RuntimeError: CUDA error: operation not supported

报了如下错误:

got prompt
model_type EPS
adm 0
making attention of type 'vanilla-pytorch' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla-pytorch' with 512 in_channels
missing {'cond_stage_model.text_projection', 'cond_stage_model.logit_scale'}
left over keys: dict_keys(['cond_stage_model.transformer.text_model.embeddings.position_ids', 'model_ema.decay', 'model_ema.num_updates'])
loading new
loading new
loading in lowvram mode 1842.6899042129517
!!! Exception during processing !!!
Traceback (most recent call last):File "E:\openai\project\ComfyUI\execution.py", line 152, in recursive_executeoutput_data, output_ui = get_output_data(obj, input_data_all)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\execution.py", line 82, in get_output_datareturn_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\execution.py", line 75, in map_node_over_listresults.append(getattr(obj, func)(**slice_dict(input_data_all, i)))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\nodes.py", line 1236, in samplereturn common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\nodes.py", line 1206, in common_ksamplersamples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\comfy\sample.py", line 81, in samplecomfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)File "E:\openai\project\ComfyUI\comfy\model_management.py", line 394, in load_models_gpucur_loaded_model = loaded_model.model_load(lowvram_model_memory)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "E:\openai\project\ComfyUI\comfy\model_management.py", line 288, in model_loadaccelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)File "D:\Program Files\Python\Lib\site-packages\accelerate\big_modeling.py", line 391, in dispatch_modelattach_align_device_hook_on_blocks(File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 532, in attach_align_device_hook_on_blocksadd_hook_to_module(module, hook)File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 155, in add_hook_to_modulemodule = hook.init_hook(module)^^^^^^^^^^^^^^^^^^^^^^File "D:\Program Files\Python\Lib\site-packages\accelerate\hooks.py", line 253, in init_hookset_module_tensor_to_device(module, name, self.execution_device)File "D:\Program Files\Python\Lib\site-packages\accelerate\utils\modeling.py", line 307, in set_module_tensor_to_devicenew_value = old_value.to(device)^^^^^^^^^^^^^^^^^^^^
RuntimeError: CUDA error: operation not supported
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

其实就是说,我当前电脑的GPU或硬件,并不支持当前CUDA中的某些操作。

解决办法

官方提供了两种解决策略。

方式一:黑名单策略

在这里插入图片描述

在这里插入图片描述

加完后,再重启。发现还是不行。

方式二:启动时添加–disable-cuda-malloc

# 注意--disable-cuda-malloc
E:\openai\project\ComfyUI>python main.py --disable-cuda-malloc

最后,通过方式二,得以解决。


参考地址:

https://github.com/comfyanonymous/ComfyUI#manual-install-windows-linux

Stable Diffusion ComfyUI 入门感受

相关文章:

【ComfyUI】安装 之 window版

文章目录 序言步骤下载comfyUI配置大模型和vae下载依赖组件启动 生成图片解决办法 序言 由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。 故也…...

iMazing 2 .17.9最新官方中文版免费下载安装激活

iMazing 2 .17.9最新版是一款帮助用户管理IOS手机的应用程序,iMazing2最新版能力远超iTunes提供的终极的iOS设备管理器。IMazing与你的iOS设备(iPhone、 iPad或iPod)相连,使用起来非常的方便。作为苹果指定的iOS设备同步工具。 mazing什么意思 iMazing…...

Postman应用——Pre-request Script和Test Script脚本介绍

文章目录 Pre-request Script所在位置CollectionFolderRequest Test Script所在位置CollectionFolderRequest Pre-request Script(前置脚本):可以使用在Collection、Folder和Request中,并在Request请求之前执行,可用于…...

vue2中年份季度选择器(需要安装element)

调用 <!--父组件调用--><QuarterCom v-model"quart" clearable default-current/> 组件代码 <template><div><span style"margin-right: 10px">{{ label }}</span><markstyle"position:fixed;top:0;bottom:0…...

QT day5

数据库完成登入注册 mainwindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H #include <QMainWindow> #include<QDebug> #include<QPushButton> #include<QLineEdit> #include<QLabel> #include <QMainWindow> #include<QMessageBo…...

设计模式Java实战

文章目录 一、前置1.1 目的1.2 面向对象1.3 接口和抽象类 二、七大设计原则2.1 单一职责2.2 接口隔离原则2.3 依赖倒转原则2.4 里氏替换原则2.5 开闭原则2.6 不要重复原则2.7 迪米特最少知道法则 三、23种设计模式3.1创建型&#xff1a;创建对象3.1.1 单例模式定义最佳实践场景…...

外国固定资产管理系统功能有哪些

很多公司都在寻找提高自己资产管理效益的方法。为了满足这一要求&#xff0c;国外的固定资产管理系统已经发展成多种形式。以下是国外一些常见的固定资产管理系统的特点:自动化和智能化:许多现代固定资产管理系统采用自动化和数字化技术&#xff0c;以简化流程&#xff0c;减少…...

Postman应用——控制台调试

当你在测试脚本中遇到错误或意外行为时&#xff0c;Postman控制台可以帮助你识别&#xff0c;通过将console.log调试语句与你的测试断言相结合&#xff0c;你可以检查http请求和响应的内容&#xff0c;以及变量之类的。 通常可以使用控制台日志来标记代码执行&#xff0c;有时…...

如何制作思维导图?

思维导图是一种非常有用的工具&#xff0c;可以被广泛应用于不同领域的人群。以下是一些常见的使用人群&#xff1a;学生、教育工作人员、各领域的专业人员&#xff0c;法律、商业、医学等等&#xff0c;创作者、艺术家、个人自我成长管理。 由此可见&#xff0c;思维导图可以做…...

【力扣每日一题】2023.9.21 收集树中金币

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一棵树&#xff0c;不过这棵树不是普通的树&#xff0c;而是无向无根树。给我们一个二维数组表示节点之间的连接关系&#xff…...

Python与数据分析--每天绘制Matplotlib库实例图片3张-第1天

目录 1.实例1--Bar color demo 2.实例2--Bar Label Demo 3.实例3--Grouped bar chart with labels 1.实例1--Bar color demo import matplotlib.pyplot as plt # 支持中文 plt.rcParams[font.sans-serif] [SimHei] # 用来正常显示中文标签 plt.rcParams[axes.unicode_minus…...

pycharm 中package, directory, sources root, resources root的区别

【遇到的问题】 导入yolov5中有utils文件&#xff0c;自己的代码中也有utils文件&#xff0c;使得yolov5中的这部分引用出错了。 【解决方案】 单独建立detection文件夹&#xff0c;把检测相关的都放在这里&#xff0c;yolov5是github上拉取的源码&#xff0c;发现yolov5中fr…...

【谢希尔 计算机网络】第2章 物理层

目录 通信基础 基本概念 两个公式lim 奈氏准则 香农定理 奈氏准则 VS 香农定理 编码与调制 ​编辑 物理层下面的传输媒体 导引型传输媒体 1. 双绞线 2. 同轴电缆 3. 光缆 非导引型传输媒体 无线电微波通信 卫星通信 无线局域网使用的 ISM 频段 信道复用技术 …...

Eclipse工具使用技巧

1、常用快捷键 ctrlshifto 快速导包 CtrlSpace 内容助理 说明:内容助理。提供对方法,变量,参数,javadoc等得提示,应运在多种场合,总之需要提示的时候可先按此快捷键。注:避免输入法的切换设置与此设置冲突 CtrlShiftSpace 变量提示 Ctrl/ 添加/消除//注释 CtrlShift/ 添加…...

python LeetCode 刷题记录 94

题目 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 代码 递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.righ…...

滴滴可观测平台 Metrics 指标实时计算如何实现了又准又省?

在滴滴&#xff0c;可观测平台的 Metrics 数据有一些实时计算的需求&#xff0c;承载这些实时计算需求的是一套又一套的 Flink 任务。之所以会有多套 Flink 任务&#xff0c;是因为每个服务按照其业务观测需要不同的指标计算&#xff0c;也就对应了不同数据处理拓扑。我们尽力抽…...

每天几道Java面试题:IO流(第五天)

目录 第五幕 、第一场&#xff09;街边 友情提醒 背面试题很枯燥&#xff0c;加入一些戏剧场景故事人物来加深记忆。PS:点击文章目录可直接跳转到文章指定位置。 第五幕 、 第一场&#xff09;街边 【衣衫褴褛老者&#xff0c;保洁阿姨&#xff0c;面试者老王】 衣衫褴褛老…...

js/axios/umi-request 根据后端返回的二进制流下载文件

type ResponseType {data: Blob;headers: {content-disposition?: string;}; }; // 下载 (创建a标签) export const downloadBlob (response: ResponseType) > {const blob response.data; // 获取响应中的 Blob 数据const contentDisposition response.headers[conten…...

软件评测师之流水线

目录 一.概念二.周期三.执行时间的计算 一.概念 程序在执行时多条指令可以层叠并行的技术。 二.周期 取指→分析→执行 指令执行的各个阶段里面&#xff0c;执行时间最长的为流水线的周期。 三.执行时间的计算 n条指令执行的总时间流水线计算公式&#xff1a;单条指令所需…...

Linux系统编程——网络编程的学习

Linux系统编程学习相关博文 Linux系统编程——文件编程的学习Linux系统编程——进程的学习Linux系统编程——进程间通信的学习Linux系统编程——线程的学习 Linux系统编程——网络编程的学习 一、概述1. TCP/UDP2. 端口号3. 字节序4. Sockt服务器和客户端的开发步骤1. 服务器2…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...