当前位置: 首页 > news >正文

P1827 [USACO3.4] 美国血统 American Heritage(前序 + 中序 生成后序)

P1827 [USACO3.4] 美国血统 American Heritage(前序 + 中序 生成后序)

一、前言

二叉树入门题。涉及到树的基本知识、树的结构、树的生成。
本文从会从结构,到完成到,优化。

二、基础知识

Ⅰ、二叉树的遍历

  • 前序遍历: 左右
  • 中序遍历:
  • 后序遍历: 左右

通过上面的观察,可得根在那,就是什么方式的遍历

Ⅱ、二叉树的结构

二叉树的结构:节点值 + 左节点指针 + 右节点指针

// c++的结构体写法
struct node {char val;node *left;node *right;node() : val(0), left(nullptr), right(nullptr){}node(int val) : val(val), left(nullptr), right(nullptr){}node(int val, node *left, node *right) : val(val), left(left), right(right){}
};
// c语言结构体写法
struct node {char val;struct node *left;struct node *right;node() : val(0), left(NULL), right(NULL){}node(int val){val = val;left = NULL;right = NULL;{node(int val, struct node *left, struct node *right) {val = val;left = left;right = right;}
};

三、直接思路

通过 前序 + 中序 直接生成 树。然后再前序遍历(可以过)
现在的问题,就变成了。怎么生成树了。
估计大家在学习数据结构,二叉树这一章节中。老师肯定讲过手写这个题(通过前序或后序找到根节点,然后把中序分成两部分,左子树,右子树)。但是现在怎么把他变成代码呢?

#include <iostream>
using namespace std;struct node {char val;node *left;node *right;node() : val(0), left(nullptr), right(nullptr){}node(char x) : val(x), left(nullptr), right(nullptr){}node(char x, node *left, node *right) : val(x), left(left), right(right){}
};
/*
s1 中序
[inorderBegin, inorderEnd)
s2 前序
[preorderBegin, preorderEnd)
上述就是现在树的范围
再分割子树的范围就可以了
明白范围!!!左端点可取,右端点不可取
*/
node *traversal(string s1, int inorderBegin, int inorderEnd, string s2, int preorderBegin, int preorderEnd) {if (preorderEnd == preorderBegin) return nullptr;char val = s2[preorderBegin];node *root = new node(val);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex; // 左右子树的分割点for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (s1[delimiterIndex] == val) break;}// 左子树// 中序int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 前序int leftPreorderBegin = preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin;// 右子树int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;int rightPreorderBegin = preorderBegin + delimiterIndex - inorderBegin + 1;int rightPreorderEnd = preorderEnd;root->left = traversal(s1, leftInorderBegin, leftInorderEnd, s2, leftPreorderBegin, leftPreorderEnd);root->right = traversal(s1, rightInorderBegin, rightInorderEnd, s2, rightPreorderBegin, rightPreorderEnd);return root;
}void dfs(node *root) {if (!root) return ;dfs(root->left);dfs(root->right);cout << root->val;
}int main() {node *tree;string s1, s2;cin >> s1 >> s2;tree = traversal(s1, 0, s1.size(), s2, 0, s2.size());dfs(tree);return 0;
}

在这里插入图片描述

四、优化

通过上面可以发现,他在生成树的过程中,就是经行的后续遍历。所以不用直接生成树。

#include <iostream>
using namespace std;void traversal(string s1, int inorderBegin, int inorderEnd, string s2, int preorderBegin, int preorderEnd) {if (preorderEnd == preorderBegin) return;char val = s2[preorderBegin];int delimiterIndex; // 左右子树的分割点for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (s1[delimiterIndex] == val) break;}// 左子树// 中序int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 前序int leftPreorderBegin = preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin;// 右子树int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;int rightPreorderBegin = preorderBegin + delimiterIndex - inorderBegin + 1;int rightPreorderEnd = preorderEnd;traversal(s1, leftInorderBegin, leftInorderEnd, s2, leftPreorderBegin, leftPreorderEnd);traversal(s1, rightInorderBegin, rightInorderEnd, s2, rightPreorderBegin, rightPreorderEnd);cout << val;
}int main() {string s1, s2;cin >> s1 >> s2;traversal(s1, 0, s1.size(), s2, 0, s2.size());return 0;
}

五、相关题目

  • LeetCode 105. 从前序与中序遍历序列构造二叉树
  • LeetCode 106. 从中序与后序遍历序列构造二叉树

六、最后

创作不易,留个赞,鼓励一下把!

相关文章:

P1827 [USACO3.4] 美国血统 American Heritage(前序 + 中序 生成后序)

P1827 [USACO3.4] 美国血统 American Heritage&#xff08;前序 中序 生成后序&#xff09; 一、前言 二叉树入门题。涉及到树的基本知识、树的结构、树的生成。 本文从会从结构&#xff0c;到完成到&#xff0c;优化。 二、基础知识 Ⅰ、二叉树的遍历 前序遍历&#xff…...

【四、centOS安装docker】

安装docker sudo yum install -y yum-utils device-mapper-persistent-data lvm2 如果以上报错 备份系统自带yum源配置文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup进入 /etc/yum.repos.d cd /etc/yum.repos.d删除文件 rm -f *.r…...

想学嵌入式开发,薪资怎么样?

想学嵌入式开发&#xff0c;薪资怎么样&#xff1f; 对于嵌入式工程师来说呢&#xff0c;它重点学习内容就是首先一定要打好基础&#xff0c;如果从编程语言角度来讲&#xff0c;那么可以在语言上选C或者C&#xff0c;你可以选择其中任何一门语言作为你的入门。 最近很多小伙伴…...

SQL死锁进程内容查询语句

1.方式1 SELECT object_name(A.resource_associated_entity_id) as TABLENAME, A.request_session_id AS SPID,DB_NAME(B.dbid) AS DBName,B.blocked,B.dbid,B.program_name,B.waitresource,B.lastwaittype,B.loginame,B.hostname,B.login_time,B.last_batch--,B.* FROM sy…...

Ubuntu 20.04中Nightingale二进制部署

参考博客《【夜莺监控】初识夜莺&#xff0c;强&#xff01;》 lsb_release -r可以看到操作系统版本是20.04&#xff0c;uname -r可以看到内核版本是5.5.19。 sudo apt-get update进行更新镜像源。 完成之后&#xff0c;如下图&#xff1a; sudo apt-get upgrade更新软件…...

深入探讨Java面试中内存泄漏:如何识别、预防和解决

引言 在编写和维护Java应用程序时&#xff0c;内存泄漏是一个重要的问题&#xff0c;可能导致性能下降和不稳定性。本文将介绍内存泄漏的概念&#xff0c;为什么它在Java应用程序中如此重要&#xff0c;并明确本文的目标&#xff0c;即识别、预防和解决内存泄漏问题。 内存泄…...

win10 安装.net framework 3.5,错误代码0x8024401C

win10 安装.net framework 3.5&#xff0c;错误代码0x8024401C 参考链接&#xff1a;https://www.gxlsystem.com/diannaowenti-386775.html 解决方法如下&#xff0c;cmd中执行&#xff1a; net stop wuauserv reg delete HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\W…...

杂记 | Langchain中few-shot提示词模板的使用(给提示词添加示例)

文章目录 01 普通的提示词模板02 few-shot提示词模板 Langchain是一个集成多个大语言模型的开源框架&#xff0c;可以使用它来快速开发大语言模型应用。 本文的代码使用到的模块&#xff1a; from typing import List, Dict from langchain import PromptTemplate, FewShotPr…...

SVN -基础

SVN - 基础 概念操作步骤开发实际经验 概念 带SVN路径 有隐藏文件&#xff0c;记录repo的一些信息&#xff0c;与repo进行关联&#xff0c;可以与repo进行同步 不带SVN路径 只是单纯的文件&#xff0c;与repo独立 操作步骤 checkout 具有路径 URLcheckout dir 输出目标文件夹…...

MySQL基础终端命令与Python简单操作MySQL

文章目录 MySQL终端命令1. 进入mysql2. 创建数据库3. 选择数据库4. 创建数据表1. 主键约束2. 外键约束3. 非空约束4. 唯一约束5. 使用默认约束6. 设置id为自增列 5. 查看数据表6. 修改数据表1. 修改表名2. 修改表的字段类型3. 修改表的字段名4. 为表添加字段5. 删除字段6. 调整…...

编译原理.龙书学习1

第一章&#xff1a; 编译器&#xff1a;将程序翻译成一种能够被计算机执行的形式 解释器&#xff1a;解释器直接利用用户提供的输入执行源程序中指定的操作 一个编译器的结构 编译器将源程序映射为语义上等价的目标程序&#xff0c;这个映射过程由两部分组成&#xff1a;分析…...

anaconda安装完成之后输入conda -V没有反应

anaconda安装完成后&#xff0c;conda没有反应 vim ~/.bashrc后面添加内容 # added by Anaconda3 5.3.0 installer # >>> conda init >>> # !! Contents within this block are managed by conda init !! __conda_setup"$(CONDA_REPORT_ERRORSfalse /u…...

netty报文解析之粘包半包问题

粘包问题 Netty 的粘包问题是指在网络传输过程中&#xff0c;由于 TCP 协议本身的特点&#xff0c;导致发送方发送的若干个小数据包被接收方合并成了一个大数据包。这种情况称为粘包。 TCP 协议是面向流的协议&#xff0c;没有数据边界&#xff0c;发送方发送的数据可能会被分…...

EasyCode整合mybatis-plus的配置

文章目录 entitymapper.javamapper.xmlserviceserviceImplcontroller 这篇文章不教你如何安装和使用EasyCode&#xff0c;只是贴出可以使用的配置。 具体EasyCode的使用可以查看其它的文章。 entity ##导入宏定义 $!{define.vm}##保存文件&#xff08;宏定义&#xff09; #sa…...

实施预测性维护解决方案的挑战及PreMaint的应对方法

前面我们介绍了企业选择预测性维护解决方案的常见问题和PreMaint的策略&#xff0c;本期我们将带来实施过程中可能会遇到的挑战&#xff0c;以及如何通过PreMaint来应对这些挑战&#xff0c;以实现可靠的预测性维护。 随着工业技术的不断进步&#xff0c;预测性维护作为一种先进…...

1. js中let、var、const定义变量区别与方式

1 声明语法 var upperA A; let upperB B; const upperC C; 只声明不初始化的结果&#xff0c;【 const定义的常量不可以修改&#xff0c;而且必须初始化】 // var 声明变量 var upperA; console.log(打印大写的A&#xff1a;%s, upperA); // 结果&#xff1a;打印大写的A&am…...

【STM32学习】I2C通信协议 | OLED屏

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《STM32学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 今天需要将代码烧录到开发板中&#xff0c;本喵默认大家都会创建工程&#xff0c;以及进行基本的…...

Nvme Spec 第一章节学习

Nvme Express Base Specification 第一章 简介 1.1概述 NVM ExpressTM&#xff08;NVMeTM&#xff09;接口允许主机软件与非易失性存储器子系统通信。 此接口针对企业和客户端固态驱动器进行了优化&#xff0c;通常作为寄存器级接口连接到PCI Express接口。 注&#xff1a;在…...

第一章:最新版零基础学习 PYTHON 教程(第九节 - Python 语句中的 – 多行语句)

Python 中的语句: 在Python中,语句是Python解释器可以读取和执行的逻辑命令。它可能是Python 中的赋值语句或表达式。 Python 中的多行语句: 在Python中,语句通常写成一行,每行的最后一个字符是换行符。要将语句扩展到一行或多行,我们可以使用大括号 {}、圆括号 ()、方…...

kafka 3.0 离线安装

1.安装zookeeper 解压apache-zookeeper-3.8.0-bin.tar.gz到指定目录,复制conf目录下zoo_sample.cfg到zoo.cfg,并修改配置。 # The number of milliseconds of each tick tickTime=2000 # The number of ticks that the initial # synchronization phase can take initLimit…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...