【深度学习实验】前馈神经网络(三):自定义多层感知机(激活函数logistic、线性层算Linear)
目录
一、实验介绍
二、实验环境
1. 配置虚拟环境
2. 库版本介绍
三、实验内容
0. 导入必要的工具包
1. 构建数据集
2. 激活函数logistic
3. 线性层算子 Linear
4. 两层的前馈神经网络MLP
5. 模型训练
一、实验介绍
- 本实验实现了一个简单的两层前馈神经网络
- 激活函数logistic
- 线性层算子Linear
二、实验环境
本系列实验使用了PyTorch深度学习框架,相关操作如下:
1. 配置虚拟环境
conda create -n DL python=3.7
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn
2. 库版本介绍
| 软件包 | 本实验版本 | 目前最新版 |
| matplotlib | 3.5.3 | 3.8.0 |
| numpy | 1.21.6 | 1.26.0 |
| python | 3.7.16 | |
| scikit-learn | 0.22.1 | 1.3.0 |
| torch | 1.8.1+cu102 | 2.0.1 |
| torchaudio | 0.8.1 | 2.0.2 |
| torchvision | 0.9.1+cu102 | 0.15.2 |
三、实验内容
ChatGPT:
前馈神经网络(Feedforward Neural Network)是一种常见的人工神经网络模型,也被称为多层感知器(Multilayer Perceptron,MLP)。它是一种基于前向传播的模型,主要用于解决分类和回归问题。
前馈神经网络由多个层组成,包括输入层、隐藏层和输出层。它的名称"前馈"源于信号在网络中只能向前流动,即从输入层经过隐藏层最终到达输出层,没有反馈连接。
以下是前馈神经网络的一般工作原理:
输入层:接收原始数据或特征向量作为网络的输入,每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换,产生一个输出信号。
隐藏层:前馈神经网络可以包含一个或多个隐藏层,每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入,并将加权和经过激活函数转换后的信号传递给下一层。
输出层:最后一个隐藏层的输出被传递到输出层,输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型(分类或回归)使用适当的激活函数(如Sigmoid、Softmax等)将最终结果输出。
前向传播:信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中,每个神经元将前一层的输出乘以相应的权重,并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行,直到产生最终的输出。
损失函数和训练:前馈神经网络的训练过程通常涉及定义一个损失函数,用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross-Entropy)。通过使用反向传播算法(Backpropagation)和优化算法(如梯度下降),网络根据损失函数的梯度进行参数调整,以最小化损失函数的值。
前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战,一些改进的网络结构和训练技术被提出,如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。
本系列为实验内容,对理论知识不进行详细阐释
(咳咳,其实是没时间整理,待有缘之时,回来填坑)

0. 导入必要的工具包
import torch
from torch import nn
1. 构建数据集
input = torch.ones((1, 10))
创建了一个输入张量`input`,大小为(1, 10)。
2. 激活函数logistic
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))
logistic函数的特点是将输入值映射到一个介于0和1之间的输出值,可以看作是一种概率估计。当输入值趋近于正无穷大时,输出值趋近于1;当输入值趋近于负无穷大时,输出值趋近于0。因此,logistic函数常用于二分类问题,将输出值解释为概率值,可以用于预测样本属于某一类的概率。在神经网络中,logistic函数的引入可以引入非线性特性,使得网络能够学习更加复杂的模式和表示。
3. 线性层算子 Linear
class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs
Linear类是一个自定义的线性层,继承自nn.Module,- 它具有两个参数:
input_size和output_size,分别表示输入和输出的大小。
- 它具有两个参数:
- 在初始化时,创建了两个参数:
W和b,分别代表权重和偏置,都是可训练的张量,并通过nn.Parameter进行封装。params和grads是字典类型的属性,用于存储参数和梯度;inputs是一个临时变量,用于存储输入。
forward方法实现了前向传播的逻辑,利用输入和参数计算输出。
4. 两层的前馈神经网络MLP
class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2
- 初始化时创建了两个线性层
Linear对象:fc1和fc2 forward方法实现了整个神经网络的前向传播过程:- 输入
x首先经过第一层线性层fc1, - 然后通过
logistic函数进行激活, - 再经过第二层线性层
fc2, - 最后再经过一次
logistic函数激活, - 并返回最终的输出。
- 输入
5. 模型训练
input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)
- 定义了三个变量
input_size、hidden_size和output_size,分别表示输入大小、隐藏层大小和输出大小。 - 创建了一个
MLP对象net,并将输入input传入模型进行前向计算,得到输出output。最后将输出打印出来。

6. 代码整合
# 导入必要的工具包
import torch
from torch import nn# 线性层算子,请一定注意继承自 nn. Module, 这会帮你解决许多细节上的问题
class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs# 实现一个两层的前馈神经网络
class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2# Logistic 函数
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))input = torch.ones((1, 10))
input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)
相关文章:
【深度学习实验】前馈神经网络(三):自定义多层感知机(激活函数logistic、线性层算Linear)
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集 2. 激活函数logistic 3. 线性层算子 Linear 4. 两层的前馈神经网络MLP 5. 模型训练 一、实验介绍 本实验实现了一个简单的两层前馈神经网络 激活函数…...
HJ68 成绩排序
描述 给定一些同学的信息(名字,成绩)序列,请你将他们的信息按照成绩从高到低或从低到高的排列,相同成绩 都按先录入排列在前的规则处理。 例示: jack 70 peter 96 Tom 70 smith 67 从高到低…...
FPGA——UART串口通信
文章目录 前言一、UART通信协议1.1 通信格式2.2 MSB或LSB2.3 奇偶校验位2.4 UART传输速率 二、UART通信回环2.1 系统架构设计2.2 fsm_key2.3 baud2.4 sel_seg2.5 fifo2.6 uart_rx2.7 uart_tx2.8 top_uart2.9 发送模块时序分析2.10 接收模块的时序分析2.11 FIFO控制模块时序分析…...
华为云Stack的学习(七)
八、华为云Stack存储服务介绍 1.云硬盘EVS 云硬盘(Elastic Volume Service,EVS),又名磁盘,是一种虚拟块存储服务,主要为ECS(Elastic Cloud Server)和BMS(Bare Metal Se…...
安装k8s集群
一、前置环境配置 安装两台centos 实验环境,一台pc配有docker环境,有两个centsos7容器,其中一个容器作为master,一个作为node。如果master与node都是用默认端口,会存在冲突,所以在此基础上做细微的调整。…...
C++中编写没有参数和返回值的函数
C中编写没有参数和返回值的函数 返回值为 void 函数不需要将值返回给调用者。为了告诉编译器函数不返回值,返回类型为 void。例如: #include <iostream>// void means the function does not return a value to the caller void printHi() {std…...
SWC 流程
一个arxml 存储SWC (可以存多个,也可以一个arxml存一个SWC)一个arxml 存储 composition (只能存一个)一个arxml 存储 system description (通过import dbc自动生成system) 存储SWC和composition的arxml文件分开&#…...
怒刷LeetCode的第10天(Java版)
目录 第一题 题目来源 题目内容 解决方法 方法一:两次拓扑排序 第二题 题目来源 题目内容 解决方法 方法一:分治法 方法二:优先队列(Priority Queue) 方法三:迭代 第三题 题目来源 题目内容…...
java框架-Springboot3-场景整合
文章目录 java框架-Springboot3-场景整合批量安装中间件NoSQL整合步骤RedisTemplate定制化 接口文档远程调用WebClientHttp Interface 消息服务 java框架-Springboot3-场景整合 批量安装中间件 linux安装中间件视频 NoSQL 整合redis视频 整合步骤 RedisTemplate定制化 Re…...
在Bat To Exe Converter,修改为当异常结束或终止时,程序重新启动执行
在Bat To Exe Converter,修改为当异常结束或终止时,程序重新启动执行 .bat中的代码部分: .bat中的代码echo offpython E:\python\yoloProjectTestSmallLarge\detect.pypause,我想你能帮在Bat To Exe Converter,修改成…...
PythonWeb服务器(HTTP协议)
一、HTTP协议与实现原理 HTTP(Hypertext Transfer Protocol,超文本传输协议)是一种用于在网络上传输超文本数据的协议。它是Web应用程序通信的基础,通过客户端和服务器之间的请求和响应来传输数据。在HTTP协议中连接客户与服务器的…...
Northstar 量化平台
基于 B/S 架构、可替代付费商业软件的一站式量化交易平台。具备历史回放、策略研发、模拟交易、实盘交易等功能。兼顾全自动与半自动的使用场景。 已对接国内期货股票、外盘美股港股。 面向程序员的量化交易软件,用于期货、股票、外汇、炒币等多种交易场景ÿ…...
c语言进阶部分详解(经典回调函数qsort()详解及模拟实现)
大家好!上篇文章(c语言进阶部分详解(指针进阶2)_总之就是非常唔姆的博客-CSDN博客)我已经对回调函数进行了初步的讲解和一个简单的使用事例,鉴于篇幅有限没有进行更加详细的解释,今天便来补上。…...
win下 lvgl模拟器codeblocks配置
链接: 官方lvgl的codeblocks官方例子 下载慢的话,可能需要点工具。 需要下载的东西 https://github.com/lvgl/lv_port_win_codeblocks https://github.com/lvgl/lv_drivers/tree/4f98fddd2522b2bd661aeec3ba0caede0e56f96b https://github.com/lvgl/lvgl/tree/7a23…...
Quartus出租车计价器VHDL计费器
名称:出租车计价器VHDL计费器 软件:Quartus 语言:VHDL 要求: 启动键start表示汽车启动,起步价7元,同时路程开始计数,停止键stop表示熄火,车费和路程均为0,当暂停键pa…...
浅谈单元测试:测试和自动化中的利用
【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程,刷完面试就稳了,你也可以当高薪软件测试工程师(自动化测试) 浅谈单元测试是一件棘手的事情。我很确定测试人员在某个时候会抱怨开发人员没有正确地进行单元测试&…...
深度详解Java序列化
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
Linux下的网络编程——B/S模型HTTP(四)
前言: HTTP是基于B/S架构进行通信的,而HTTP的服务器端实现程序有httpd、nginx等,其客户端的实现程序主要是Web浏览器,例如Firefox、Internet Explorer、Google Chrome、Safari、Opera等,此外,客户端的命令…...
Go语言入门篇
目录 一、基础数据类型 1.1 变量的定义方式 1.2 用%T输出变量的类型 二、复合数据类型 2.1 数组 2.1.2、数组的遍历 2.1.3 数组传参 2.2. 切片slice 2.2.1. 初始化切片 2.2.2. append向切片中追加元素 2.2.3. 切片的截取 2.3. map 2.3.1. map初始化 2.3.2. 添加和…...
基于springboot+vue的青年公寓服务平台
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
