当前位置: 首页 > news >正文

二值贝叶斯滤波计算4d毫米波聚类目标动静属性

机器人学中有些问题是二值问题,对于这种二值问题的概率评估问题可以用二值贝叶斯滤波器binary Bayes filter来解决的。比如机器人前方有一个门,机器人想判断这个门是开是关。这个二值状态是固定的,并不会随着测量数据变量的改变而改变。就像门一样,不是开就是关。

现在我利用二值贝叶斯滤波来在跟踪阶段判断4d毫米波聚类后目标的动态和静态属性

当状态静止时。置信度仅是测量的函数:

b e l t ( x ) = p ( x ∣ z 1 : t , u 1 : t ) = p ( x ∣ z 1 : t ) (1) bel_t(x) = p(x|z_{1:t},u_{1:t}) = p(x|z_{1:t}) \tag 1 belt(x)=p(xz1:t,u1:t)=p(xz1:t)(1)

这里有两个状态,用 x x x ¬ x \neg x ¬x表示,具体来说: b e l t ( ¬ x ) = 1 − b e l t ( x ) bel_t(\neg x)= 1-bel_t(x) belt(¬x)=1belt(x),状态 x x x不随时间变化。

置信度通常是以概率比的对数(log odds ratio)的形式实现的。 状态x的概率(odds)被定义此事件的概率除以该事件不发生的概率:
p ( x ) p ( ¬ x ) = p ( x ) 1 − p ( x ) (2) \frac{p(x)}{p(\neg x)} = \frac{p(x)}{1-p(x)} \tag 2 p(¬x)p(x)=1p(x)p(x)(2)

概率对数是这个表达式的对数:

l ( x ) : = p ( x ) 1 − p ( x ) (3) l(x): = \frac{p(x)}{1-p(x)} \tag 3 l(x):=1p(x)p(x)(3)

概率对数假设值为 − ∞ ∼ ∞ - \infty \sim \infty ,避免了概率接近0或1引起的截断问题

事实上,任何对测量做出反应的变量的递增和递减都可以解释为贝叶斯滤波的概率对数形式。该二值贝叶斯滤波利用一个反向测量模型 p ( x ∣ z t ) p(x|z_t) p(xzt)代替熟悉的前向测量模型 p ( z t ∣ x ) p(z_t|x) p(ztx)。反向测量模型将关于(二值)状态变量的一个分布指定为测量 z t z_t zt的一个函数。

l t = l t − 1 + l o g p ( x ∣ z t ) 1 − p ( x ∣ z t ) − l o g p ( x ) 1 − p ( x ) (4) l_t = l_{t-1} + log \frac{p(x|z_t)}{1-p(x|z_t)} - log \frac{p(x)}{1-p(x)} \tag 4 lt=lt1+log1p(xzt)p(xzt)log1p(x)p(x)(4)

l t l_t lt是状态变量的后验置信度的概率对数,该二值状态变量不随时间变化

根据式(3)概率对数的定义证明,置信度 b e l t ( x ) bel_t(x) belt(x)可以根据概率比对数 l t l_t lt通过下面的方式来求得:
b e l t ( x ) = 1 − 1 1 + e x p { l t } bel_t(x) = 1- \frac{1}{1+exp\{l_t\}} belt(x)=11+exp{lt}1

下面证明二值贝叶斯滤波算法的正确性:

在这里插入图片描述

在这里插入图片描述
在动态和静态属性更新中, p ( x ∣ z t ) p(x|z_t) p(xzt)计算为速度大于给定值 v d v_d vd的点数与目标点云中的点总数的比值。

t=0: 机器人对外界环境一无所知,p(x=静态)= p(x=动态)= 0.5

今天写代码验证效果!!!

参考:

  • Thrun, S. Probabilistic Robotics. Commun. ACM 2002, 45, 52–57
  • Tracking of Multiple Static and Dynamic Targets for 4D Automotive Millimeter-Wave Radar Point Cloud in Urban Environments. Remote. Sens. 15(11): 2923 (2023)

相关文章:

二值贝叶斯滤波计算4d毫米波聚类目标动静属性

机器人学中有些问题是二值问题,对于这种二值问题的概率评估问题可以用二值贝叶斯滤波器binary Bayes filter来解决的。比如机器人前方有一个门,机器人想判断这个门是开是关。这个二值状态是固定的,并不会随着测量数据变量的改变而改变。就像门…...

【刷题笔记9.25】LeetCode:相交链表

LeetCode:相交链表 一、题目描述 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 二、分析及代码 方法一:使用哈希Set集合 (注意…...

打造本地紧密链接的开源社区——KCC@长沙开源读书会openKylin爱好者沙龙圆满举办...

2023年9月9日,由开源社联合 openKylin 社区举办的 KCC长沙开源读书会&openKylin 爱好者沙龙,在长沙圆满举办。这是 KCC长沙首次正式进入公众视野,开展开源交流活动,也是 openKylin 社区长沙首场线下沙龙。长沙地区及其周边的众…...

Python 笔记03(多线程)

一 打开命令行,查看本机IP windows r 命令行输入:cmd ipconfig 然后查看IPv4的地址:192.168.1*6.1 ipconfig 二 函数式多进程 from multiprocessing import Process import os, timedef func(name):print(进程的ID:, os.g…...

mysql-4:SQL的解析顺序

SQL语句的解析顺序 文章目录 SQL语句的解析顺序编写顺序与解析顺序解析顺序关键字FROMONOUTER JOINWHEREGROUP BYHAVINGSELECTDISTINCTORDER BYLIMIT 解析流程流程分析流程说明WHERE条件解析顺序 编写顺序与解析顺序 编写顺序 SELECT DISTINCT < select_list > FROM &l…...

如何通过优化Read-Retry机制降低SSD读延迟?

近日,小编发现发表于2021论文中,有关于优化Read-Retry机制降低SSD读延迟的研究,小编这里给大家分享一下这篇论文的核心的思路,感兴趣的同学可以,可以在【存储随笔】VX公号后台回复“Optimizing Read-Retry”获取下载链接。 本文中主要基于Charge Trap NAND架构分析。NAND基…...

matlab自动生成FPGA rom源码

1 matlab 源码 close all clear all clci=0:1:(300000-100-1); x=300000./(100+i); x=x./2; x=round(...

消息队列(RabbitMQ+RocketMQ+Kafka)

消息队列是一种应用程序之间通过异步通信进行数据交换的通信模式 消息队列的类型&#xff1a; 点对点&#xff0c;一对一的消息传递模型&#xff0c;其中每个消息只能被一个接收者消费。发送者将消息发送到队列中&#xff0c;而接收者从队列中获取消息并进行处理&#xff0c;…...

python判断语句

1.布尔类型 进行判断&#xff0c;只有是(True&#xff1a;本质上是一个数字&#xff0c;记作1)和否(False&#xff1a;本质上是一个数字&#xff0c;记作0)。 定义变量存储布尔类型数据: 变量名称 布尔类型字面量 a True代码演示&#xff1a; a True print(type(a))输出结…...

C# 虚方法

在C#中&#xff0c;虚方法&#xff08;virtual methods&#xff09;是一种允许派生类&#xff08;子类&#xff09;覆盖&#xff08;重写&#xff09;基类&#xff08;父类&#xff09;中的方法的技术。虚方法的定义和使用如下&#xff1a; 基类中定义虚方法&#xff1a; pub…...

微信小程序,动态设置三级联动, 省市区街道

1.第一步 传parentId0 查询省份 2.第二步 选择省份,传pathId选择省份的pathId, 不传parentId,会查询出 市/县数据 3.第三步 根据选择县的parentId 查询街道数据,传parentId选择的县id 4.选择结果回显 显示所选择的 path 以/分割 取最后一级<van-dropdown-menu…...

Learn Prompt- Midjourney 图片生成:Image Prompts

Prompt 自动生成 前不久&#xff0c;Midjourney 宣布支持图片转 prompt 功能。 原始图片​ blueprint holographic design of futuristic Midlibrary --v 5Prompt 生成​ 直接输入 /describe 指令通过弹出窗口上传图像并发送&#xff0c;Midjourney 会根据该图像生成四种可…...

基于微信小程序的健身房私教预约平台设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…...

安卓Compose(二)

在上一篇博客中&#xff0c;我们已经了解了安卓Compose的一些基本概念以及使用方法&#xff0c;接下来我们将继续深入学习。 一、Compose的基础组件 文本组件(Text) 文本组件是Compose中最基本的组件之一&#xff0c;用于在界面上显示文本。使用方式如下&#xff1a; // 定…...

TCP 和 UDP哪个更好

传输控制协议 &#xff08;TCP&#xff09; 和用户数据报协议 &#xff08;UDP&#xff09; 是互联网的基础支柱&#xff0c;支持从网络源到目的地的不同类型的数据传输。TCP更可靠&#xff0c;而UDP优先考虑速度和效率。本文解释了两种协议的工作原理&#xff0c;并详细讨论了…...

Spring Boot 如何实现单点登录(SSO)

当今的应用程序越来越多地采用了微服务架构&#xff0c;这就引出了一个重要的问题&#xff1a;如何实现单点登录&#xff08;Single Sign-On&#xff0c;简称SSO&#xff09;来确保用户在多个微服务之间无需重复登录。Spring Boot是一个流行的Java框架&#xff0c;它提供了一些…...

C#中的(++)和(--)运算符

目录 背景: 的前加 效果展示:​ 的后加 效果展示 :​ 总结: 背景: 自增和自减运算符存在于C/C/C#/Java等高级语言中&#xff0c;它的作用是在运算结束前(前置自增自减运算符 )或后(后置自增自减运算符 )将 变量的值加(或减)1。 在C#中&#xff0c;和--是自增和自减运…...

SVG鼠标漫游

鼠标漫游 鼠标漫游就是通过移动光标和滚轮&#xff0c;完成画布缩放、移动的交互过程。 svg 绘图使用原点在左上角的坐标系统&#xff0c;一个单位代表一像素。这里的像素不能简单理解为屏幕像素&#xff0c;是一个用户单位。svg 的 width 和 height 属性决定图像在用户系统的…...

关于Github报SSL_ERROR_SYSCALL的解决方案

最近在运行RN项目的时候发现,在我pod install命令安装pod包时产生了 SSL_ERROR_SYSCALL 的错误,如下所示。 [!] Error installing CocoaAsyncSocket [!] /usr/bin/git clone https://github.com/robbiehanson/CocoaAsyncSocket.git /var/folders/v0/2435fl9178sd4r2_1mdgk_r…...

Redis 集群搭建教程

一、介绍 Redis 集群有着高可用、易扩展、更好的性能等优势&#xff0c;本文主要是实战搭建一个三主三从的 Redis 集群。 正常来说&#xff0c;搭建 Redis 集群需要 6 台服务器。为了简单一点&#xff0c;本文通过一台服务器&#xff0c;6 个端口&#xff0c;搭建一个 Redis …...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...