当前位置: 首页 > news >正文

【深度学习】【Opencv】Python/C++调用onnx模型【基础】

【深度学习】【Opencv】python/C++调用onnx模型【基础】

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论

文章目录

  • 【深度学习】【Opencv】python/C++调用onnx模型【基础】
  • 前言
  • Python版本OpenCV
    • Windows平台安装OpenCV
    • opencv调用onnx模型
  • C++版本OpenCV
    • Windows平台安装OpenCV
    • opencv调用onnx模型
      • 简单使用
      • 调用onnx模型
  • 总结


前言

OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行加载使用。
系列学习目录:
【CPU】Pytorch模型转ONNX模型流程详解
【GPU】Pytorch模型转ONNX格式流程详解
【ONNX模型】快速部署
【ONNX模型】多线程快速部署
【ONNX模型】Opencv调用onnx


Python版本OpenCV

Windows平台安装OpenCV

博主在win10环境下装anaconda环境,而后搭建onnx模型运行所需的openCV环境。

# 搭建opencv环境
conda create -n opencv_onnx python=3.10 -y
# 激活环境
activate opencv_onnx
# 安装opencv
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

查看opencv版本

import cv2
cv2.__version__

opencv调用onnx模型

现在代码抛开任何pytorch相关的依赖,也抛开了onnx相关的依赖,只使用opencv完成了整个推理流程。

import cv2
import numpy as npdef normalizeImage(image,mean,std):normalized = image.astype(np.float32)normalized = normalized / 255.0 - meannormalized = normalized / stdreturn normalizeddef main():# 读取图片image = cv2.imread(r"./animal-1.jpg")# 将BGR图像转换为RGB格式image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 获取图像的大小ori_w, ori_h, = image.shape[0], image.shape[1]# 指定调整后的大小new_width = 416new_height = 416# 图片尺寸缩放resized_img = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)# 定义每个通道的归一化参数mean = np.array([0.485, 0.456, 0.406]).astype(np.float32)  # 均值std = np.array([0.229, 0.224, 0.225]).astype(np.float32)  # 标准差# 图片归一化normalized = normalizeImage(resized_img, mean, std)# 加载ONNX模型net = cv2.dnn.readNetFromONNX("PFNet.onnx")  # 加载训练好的识别模型# onnx是多输出,每个输出都会对应一个name,因此需要获取所有输出的nameoutput_layer_names = net.getUnconnectedOutLayersNames()blob = cv2.dnn.blobFromImage(normalized)  # 由图片加载数据 这里还可以进行缩放、归一化等预处理# 将Blob设置为模型的输入net.setInput(blob)# 运行前向传播,将所有输出name作为参数传递out = net.forward(output_layer_names)out = np.squeeze(out[3]) * 255.0output = cv2.resize(out, (ori_h, ori_w), interpolation=cv2.INTER_AREA)# 保存图像cv2.imwrite('saved_opencv_python_image.png', output)if __name__ == '__main__':main()


C++版本OpenCV

Windows平台安装OpenCV

官网下载安装文件地址,博主使用opencv-4.8.0-windows.exe版本双击运行解压后即可获得以下文件:
打开VS 2019:新建新项目---->控制台应用---->配置项目---->项目路径以及勾选“将解决方案和项目放在同一目录中---->点击创建。

设置OpenCV路径:项目---->属性。

添加附加包含目录:Debug | x64---->C/C+±—>常规---->附加包含目录。

D:\C++_demo\opencv\build\x64\vc16\bin
D:\C++_demo\opencv\build\bin
D:\C++_demo\opencv\build\include
D:\C++_demo\opencv\build\include\opencv2

链接器:Debug | x64---->链接器---->常规---->附加包含目录。

D:\C++_demo\opencv\build\x64\vc16\lib

链接器:Debug | x64---->链接器---->输入---->附加依赖项。

在D:\C++_demo\opencv\build\x64\vc16\lib下找到附加依赖项的文件。

opencv_world480d.lib

在Debug x64模式下测试,要将带有d的opencv_world480d.dll文件复制到自己项目的Debug下。

没有Debug目录时,需要在Debug | x64模式下运行一遍代码。

D:\C++_demo\opencv\build\x64\vc16\bin
===>
D:\C++_demo\opencv_onnx\x64\Debug

这里博主为了方便调试安装的是debug版本的,读者可以安装release版本的,只需要将属性的Debug | x64变成Release | x64即可,再将opencv_world480.dll文件复制到自己项目的Release下。

opencv调用onnx模型

简单使用

这里简单验证一下opencv是否安装成功,适用于包括博主在内的许多对c++不熟悉的人来说,代码完成了简单的图像的读取与显示。

#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {Mat src = imread("./animal-1.jpg");//没有图像输入if (src.empty()) {printf("....\n");return -1;}//namedWindow("输入窗口", WINDOW_FREERATIO);imshow("输入窗口", src);waitKey(0);destroyAllWindows();return 0;
}

调用onnx模型

将python版本的opencv转化成对应的c++版本的,发现输出的效果完全一致,onnx模型可以作为c++的接口来供其他应用调用。

#include <iostream>
#include <string>
#include <vector>
#include<opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
using namespace std;
cv::Mat normalizeImage(const cv::Mat& image, const cv::Scalar& mean, const cv::Scalar& std) {cv::Mat normalized;image.convertTo(normalized, CV_32F);cv::subtract(normalized / 255.0, mean, normalized);cv::divide(normalized, std, normalized);return normalized;
}
int main()
{   // 读取图片cv::Mat bgrImage = cv::imread("./animal-1.jpg", cv::IMREAD_COLOR);// 图片格式转化bgr-->rgbcv::Mat rgbImage;cv::cvtColor(bgrImage, rgbImage, cv::COLOR_BGR2RGB);// 获取图像的大小cv::Size originalSize(rgbImage.cols, rgbImage.rows);cv::Mat resizedImage;// 定义目标图像大小cv::Size targetSize(416, 416);//图片尺寸缩放cv::resize(rgbImage, resizedImage, targetSize, 0, 0, cv::INTER_AREA);// 定义每个通道的归一化参数cv::Scalar mean(0.485, 0.456, 0.406); // 均值cv::Scalar std(0.229, 0.224, 0.225);  // 标准差// 图片归一化cv::Mat normalized = normalizeImage(resizedImage, mean, std);// 加载ONNX模型cv::dnn::Net net = cv::dnn::readNetFromONNX("D:/C++_demo/opencv_onnx/PFNet.onnx");cv::Mat blob = cv::dnn::blobFromImage(normalized);// 将Blob设置为模型的输入net.setInput(blob);// 运行前向传播std::vector<cv::Mat> output_probs;// 获取多输出对应的名称std::vector<cv::String> output_layer_names = net.getUnconnectedOutLayersNames();net.forward(output_probs, output_layer_names);cv::Mat prediction = output_probs[3];cv::Mat mask;cv::resize(prediction.reshape(1, 416) * 255.0, mask, originalSize, 0, 0, cv::INTER_AREA);cv::imwrite("saved_opencv_c++_image.png", mask);return 0;
}


总结

尽可能简单、详细的介绍Python和C++下POpencv调用ONNX模型的流程。

相关文章:

【深度学习】【Opencv】Python/C++调用onnx模型【基础】

【深度学习】【Opencv】python/C调用onnx模型【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【Opencv】python/C调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型 C版本OpenCVWindows平…...

C# MQTT通讯

文章目录 前言MQTTnetMQTT初始变量生成option连接Mqtt服务器发送数据添加订阅 前言 MQTTnet是Mqtt的net版本。国内MQTTnet教程比较老旧&#xff0c;都是2.x版本。MQTTnet在4.x版本版本代码逻辑有比较大的改动。所以最后还是面向Github编程。 EMQ X介绍及安装 长链接(MQTT)测…...

使用c++实现输出爱心(软件:visual Studio)

#include <iostream> using namespace std;int main() {//爱心曲线方程(x^2y^2-a)^3-x^2*y30double a 0.5;//定义绘图边界double bound 1.3 * sqrt(a);//x,y坐标变化步长double step 0.05;//二维扫描所有点,外层逐层扫描for (double y bound; y > -bound; y - ste…...

uploadifive上传工具php版使用

uploadifive自带的DEMO文件。 下载地址&#xff1a; http://www.uploadify.com/download/ <!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"> <title>UploadiFive Test&…...

Docker容器管理

docker容器相当于一个进程&#xff0c;性能接近于原生&#xff0c;几乎没有损耗&#xff1b; docker容器在单台主机上支持的数量成百上千&#xff1b; 容器与容器之间相互隔离&#xff1b; 镜像是创建容器的基础&#xff0c;可以理解镜像为一个压缩包 Docker容器的管理 容…...

【文末送书】用Chat GPT轻松玩转机器学习与深度学习

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…...

Redis的学习

Redis Redis特征 键值型&#xff0c;value支持多种不同数据结构&#xff0c;功能丰富单线程&#xff0c;每个命令具有原子性低延迟&#xff0c;速度快&#xff08;基于内存&#xff0c;IO多路复用&#xff0c;良好的编码&#xff09;支持数据持久化支持主从集群&#xff0c;分…...

java版Spring Cloud+Mybatis+Oauth2+分布式+微服务+实现工程管理系统

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

Vue 3的 h 函数详解

Vue 3的 h 函数详解 文章目录 Vue 3的 h 函数详解1、什么是h函数2、基本用法3、动态组件4、事件监听器5、条件渲染 Vue 3的 h函数&#xff08; createVNode&#xff09;是前端开发中一个强大的工具&#xff0c;用于创建虚拟DOM节点。虚拟DOM是Vue框架中的核心概念&#xff0c…...

防近视台灯什么牌子好?推荐有效预防近视的台灯

作为一名家长&#xff0c;平常最关心的应该就是孩子能够健康成长了。但是通过调查数据我们可以发现我国青少年近视率位居世界第一&#xff0c;儿童青少年总体近视率为52.7%&#xff1b;其中6岁儿童为14.5%&#xff0c;小学生为36.0%&#xff0c;初中生为71.6%&#xff0c;高中生…...

五、C#—字符串

&#x1f33b;&#x1f33b; 目录 一、字符串1.1 字符类型1.2 转义字符1.3 字符串的声明及赋值1.3.1 c# 中的字符串1.3.2 声明字符串1.3.3 使用字符串1.3.4 字符串的初始化1.3.4.1 引用字符串常量之初始化1.3.4.2 利用字符数组初始化1.3.4.3 提取数组中的一部分进行初始化 1.3.…...

【Vue3 源码解析】nextTick

nextTick 是 Vue 3 中用于异步执行回调函数的函数&#xff0c;它会将回调函数延迟到下一个微任务队列中执行。其中&#xff0c;Vue 更新 DOM 是异步的。下面是对 nextTick 函数的详细解释&#xff1a; export function nextTick<T void, R void>(this: T,fn?: (this:…...

基于ModebusRTU通信采集温度湿度项目案例

目录 一、模拟温湿度模拟 【1.1】温湿度仪表参数 【1.1】使用电脑模拟传感器 【1.2】使用Codesys软件模拟传感器 二、自定义控件UI设计 【2.1】自定义控件温度湿度柱状设计 ​编辑 【2.1.1】设置温度湿度柱状实际显示【属性】 【2.1.2】设置温度湿度柱状的背景颜色【属…...

【已解决】关于如何将Doccano标注的文本转换成NER模型可以直接处理的CoNLL 2003格式

笔者要做命名实体识别&#xff08;NER&#xff09;的工作&#xff0c;选择了Doccano平台来进行文本标注。 Doccano平台对标注结果的导出格式是JSONL格式&#xff0c;我们导出了NER.jsonl文件。 但是用python语言搭建深度学习模型来实现NER时&#xff0c;一般接收的输入数据格式…...

网络编程day03(UDP中的connect函数、tftp)

今日任务&#xff1a;tftp的文件上传下载&#xff08;服务端已经准备好&#xff09; 服务端&#xff08;已上传&#xff09; 客户端&#xff1a; 代码&#xff1a; #include <stdio.h> #include <string.h> #include <stdlib.h> #include <sys/types.h…...

flarum 论坛 User Statistics插件修改

此插件在中国使用日期不是很理想&#xff0c;于是决定修改代码 下面是插件信息&#xff1a; User Statistics A Flarum extension. Add some user statistics in flarum posts, this extension require clarkwinkelmann/flarum-ext-likes-received and will be installed au…...

阿里云产品试用系列-容器镜像服务 ACR

阿里云容器镜像服务&#xff08;简称 ACR&#xff09;是面向容器镜像、Helm Chart 等符合 OCI 标准的云原生制品安全托管及高效分发平台。 ACR 支持全球同步加速、大规模/大镜像分发加速、多代码源构建加速等全链路提效&#xff0c;与容器服务 ACK 无缝集成&#xff0c;帮助企业…...

Langchain里的“记忆力”,让AI只记住有用的事

今天要讲以下内容&#xff1a; 1.ConversationBufferWindowMemory&#xff1a;基于一个固定长度的滑动窗口的“记忆”功能 2.ConversationSummaryMemory&#xff1a;总结对话“记忆”功能 3.ConversationSummaryBufferMemory&#xff1a;上面两个的结合&#xff0c;超过一定…...

从零开始的LINUX(一)

LINUX本质是一种操作系统&#xff0c;用于对软硬件资源进行管理&#xff0c;其管理的方式是指令。指令是先于图形化界面产生的&#xff0c;相比起图形化界面&#xff0c;指令显然更加难以理解&#xff0c;但两者只是形式上的不同&#xff0c;本质并没有区别。 简单的指令&…...

CH34X-MPHSI高速Master扩展应用—I2C设备调试

一、前言 本文介绍&#xff0c;基于USB2.0高速USB转接芯片CH347&#xff0c;配合厂商提供的USB转MPHSI&#xff08;Multi Protocol High-Speed Serial Interface&#xff09;Master总线驱动&#xff08;CH34X-MPHSI-Master&#xff09;为系统扩展I2C总线的用法&#xff0c;除…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...