当前位置: 首页 > news >正文

【100天精通Python】Day65:Python可视化_Matplotlib3D绘图mplot3d,绘制3D散点图、3D线图和3D条形图,示例+代码

1  mpl_toolkits.mplot3d  功能介绍

  mpl_toolkits.mplot3d 是 Matplotlib 库中的一个子模块,用于绘制和可视化三维图形,包括三维散点图、曲面图、线图等。它提供了丰富的功能来创建和定制三维图形。以下是 mpl_toolkits.mplot3d 的主要功能和功能简介:

  1. 3D 散点图:通过 scatter 函数,你可以绘制三维散点图,用于显示三维数据点的分布和关系。

  2. 3D 曲面图:使用 plot_surface 函数,可以创建三维曲面图,用于可视化三维数据的表面形状。这对于显示函数的三维性质非常有用。

  3. 3D 线图plot 函数允许你绘制三维线图,用于表示数据点之间的连接关系。这对于显示数据随时间或其他变量的变化趋势非常有用。

  4. 3D 条形图:通过 bar3d 函数,你可以创建三维柱状图,用于比较不同类别或组的数据。

  5. 3D 散点图标记和颜色:你可以根据数据的特性来定制散点图的标记形状和颜色,以区分不同的数据点。

  6. 3D 坐标轴定制:你可以设置和定制三维图的坐标轴,包括添加标签、设置刻度和范围等。

  7. 图形样式定制:你可以设置图形的样式,包括标题、图例、背景色、线条样式和颜色等,以使图形更具吸引力和可读性。

  8. 3D 投影mpl_toolkits.mplot3d 支持不同类型的三维投影,包括透视投影和正交投影,以满足不同的可视化需求。

  9. 动画和交互性:你可以在三维图中添加动画效果或交互式元素,以更好地探索数据。

  10. 多图形组合:你可以在同一个三维图中组合多个不同类型的图形,以展示多个数据系列。

  11. 保存图形:最后,你可以将绘制的三维图形保存为图像文件,以便在文档中使用或与他人分享。

        总之,mpl_toolkits.mplot3d 子模块为 Matplotlib 提供了强大的三维可视化工具,可以用于可视化和分析三维数据。根据你的需求,你可以选择不同的图形类型和样式来呈现数据,以便更好地理解和传达你的发现。

在 Matplotlib 的 mpl_toolkits.mplot3d 模块中,绘制 3D 图的一般流程包括以下步骤:

(1)导入必要的库和模块:

import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D

 (2)创建一个 3D 图形的绘图对象:

fig = plt.figure()

(3) 创建一个 3D 子图:

ax = fig.add_subplot(111, projection='3d')

(4) 准备数据:定义 X、Y 和 Z 数据,这些数据将在 3D 图中表示。

  1. 使用相应的 3D 绘图函数来绘制数据,例如:

    • 散点图:ax.scatter(x, y, z, c='color', marker='marker_style', label='label')
    • 曲面图:ax.plot_surface(X, Y, Z, cmap='colormap')
    • 线图:ax.plot(x, y, z, label='label')
    • 柱状图:ax.bar3d(x, y, z, dx, dy, dz, shade=True)

(5)添加坐标轴标签:

ax.set_xlabel('X轴标签') 
ax.set_ylabel('Y轴标签') 
ax.set_zlabel('Z轴标签')

(6)添加标题:

plt.title('3D 图标题')

(7)添加图例(如果需要):

ax.legend()

(8)显示图形:

plt.show()

2 绘制3D散点图

        在matplotlib的mpl_toolkits.mplot3d模块中,你可以使用`scatter`函数绘制多种类型的3D散点图。

下面是一些常见的3D散点图类型:

2.1 绘制单色散点图

        所有的散点都使用相同的颜色。可以通过设置`c`参数指定颜色。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.random.rand(100)
y = np.random.rand(100)
z = np.random.rand(100)# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制单色散点图
ax.scatter(x, y, z, c='blue')# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


2.2 绘制彩色散点图

        不同的散点可以使用不同的颜色。可以通过设置`c`参数为一个具有相同长度的数组来指定每个散点的颜色。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.random.rand(100)
y = np.random.rand(100)
z = np.random.rand(100)
colors = np.random.rand(100)# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制彩色散点图
ax.scatter(x, y, z, c=colors)# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


2.3 绘制大小变化散点图

        散点的大小可以根据某个特征进行变化。可以通过设置`s`参数为一个具有相同长度的数组来指定每个散点的大小。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.random.rand(100)  # x坐标
y = np.random.rand(100)  # y坐标
z = np.random.rand(100)  # z坐标
colors = np.random.rand(100)  # 散点颜色
sizes = np.random.randint(low=50, high=200, size=100)  # 散点大小# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制散点图
ax.scatter(x, y, z, c=colors, s=sizes, alpha=0.8)# 设置坐标轴标签
ax.set_xlabel('X')  # 设置x轴标签
ax.set_ylabel('Y')  # 设置y轴标签
ax.set_zlabel('Z')  # 设置z轴标签# 显示图形
plt.show()


2.4 绘制形状变化散点图

        散点的形状可以根据某个特征进行变化。可以通过设置`marker`参数来指定散点的形状。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.random.rand(100)
y = np.random.rand(100)
z = np.random.rand(100)
markers = ['o', 's', '^', 'D']# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制形状变化散点图
for i in range(len(x)):ax.scatter(x[i], y[i], z[i], marker=markers[i%len(markers)])# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


3 绘制3D线图

        使用mpl_toolkits.mplot3d模块中的Axes3D对象绘制3D线图。

3.1 简单线图

        使用`plot`函数绘制简单的曲线。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.linspace(0, 1, 100)
y = np.sin(2 * np.pi * x)
z = np.cos(2 * np.pi * x)# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制简单线图
ax.plot(x, y, z)# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


3.2 绘制多线图

        使用`plot`函数绘制多条线并在同一图表中显示。

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']# 创建示例数据
t = np.linspace(0, 20, 100)  # 时间或X轴数据
x1 = np.sin(t)
y1 = np.cos(t)
z1 = tx2 = np.sin(t) + 2
y2 = np.cos(t) + 2
z2 = t# 创建图形和子图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制第一条线
ax.plot(x1, y1, z1, label='线1', color='blue', linestyle='-', linewidth=2)# 绘制第二条线
ax.plot(x2, y2, z2, label='线2', color='red', linestyle='--', linewidth=2)# 添加标题
plt.title('三维多线图示例')# 添加坐标轴标签
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')
ax.set_zlabel('Z轴')# 添加图例
ax.legend()# 显示图形
plt.show()

 

3.3  绘制带标记的线图

        使用`plot`函数,并通过设置`marker`参数来添加线上的标记点。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.linspace(0, 1, 100)
y = np.sin(2 * np.pi * x)
z = np.cos(2 * np.pi * x)# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制带标记的线图
ax.plot(x, y, z, marker='o')# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


3.4  绘制立体网格线图

        使用`plot_wireframe`函数在3D空间中绘制网格线图。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X ** 2 + Y ** 2))# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制立体网格线图
ax.plot_wireframe(X, Y, Z)# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


3.5  绘制等高线图

        使用`contour`或`contourf`函数在3D空间中绘制等高线。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制3D等高线图
ax.contour3D(X, Y, Z, 50, cmap='viridis')# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()


4 绘制3D条形图

        在matplotlib中,由于 ​mpl_toolkits.mplot3d​模块的限制,没有直接绘制3D的条形图的函数。不过你可以使用 ​bar3d​函数绘制类似的3D条形图效果。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 创建数据
x = [1, 2, 3, 4, 5]  # x轴坐标位置
y = [1, 2, 3, 4, 5]  # y轴坐标位置
z = [0, 3, 2, 5, 1]  # z轴高度,即条形的高度
dx = dy = 0.8  # x和y方向的宽度
dz = z  # 条形的高度
colors = ['red', 'green', 'blue', 'orange', 'purple']  # 颜色列表,一一对应于每个条形# 创建图形和轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# 绘制3D条形图,并设置每个条形的颜色
for xi, yi, zi, color in zip(x, y, z, colors):ax.bar3d(xi, yi, 0, dx, dy, zi, color=color)# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')# 显示图形
plt.show()

相关文章:

【100天精通Python】Day65:Python可视化_Matplotlib3D绘图mplot3d,绘制3D散点图、3D线图和3D条形图,示例+代码

1 mpl_toolkits.mplot3d 功能介绍 mpl_toolkits.mplot3d 是 Matplotlib 库中的一个子模块,用于绘制和可视化三维图形,包括三维散点图、曲面图、线图等。它提供了丰富的功能来创建和定制三维图形。以下是 mpl_toolkits.mplot3d 的主要功能和功能简介&am…...

十六,镜面IBL--预滤波环境贴图

又到了开心的公式时刻了。 先看看渲染方程 现在关注第二部分,镜面反射。 其中 这里很棘手,与输入wi和输出w0都有关系,所以,再近似 其中第一部分,就是预滤波环境贴图,形式上与前面的辐照度图很相似&#…...

信息安全:恶意代码防范技术原理.

信息安全:恶意代码防范技术原理. 恶意代码的英文是 Malicious Code, 它是一种违背目标系统安全策略的程序代码,会造成目标系统信息泄露、资源滥用,破坏系统的完整性及可用性。 目录: 恶意代码概述: (1&a…...

开源媒体浏览器Kyoo

什么是 Kyoo ? Kyoo 是一款开源媒体浏览器,可让您流式传输电影、电视节目或动漫。它是 Plex、Emby 或 Jellyfin 的替代品。Kyoo 是从头开始创建的,它不是一个分叉。一切都将永远是免费和开源的。 软件特性: 管理您的电影、电视剧…...

人脸解锁设备时出现相机报错

(1)背景分析 这是项目当中实际遇到的问题,如下代码仅用作分析和记录。 现在问题的现象是:刚亮屏大概在2s以内对着人脸一般是能解锁的,但是超过2s之后在对着人脸,是无法解锁成功的。 (2&#…...

【广州华锐互动】利用VR开展工业事故应急救援演练,确保救援行动的可靠性和有效性

在工业生产中,事故的突发性与不可预测性常常带来巨大的损失。传统的应急演练方式往往存在场地限制、成本高、效果难以衡量等问题。然而,随着虚拟现实(VR)技术的快速发展,VR工业事故应急救援演练应运而生,为…...

还不知道数据类岗位的相关技能和职责吗?涤生大数据告诉你(二)

续接上文:还不知道数据类岗位的相关技能和职责吗?涤生大数据告诉你(一) 1.数据治理工程师 工作职责 数据治理工程师的工作职责主要包括以下几个方面: 1. 数据管理策略制定:制定和实施数据管理策略&#…...

常见应用层协议

一.HTTP(超文本传输协议) HTTP 和 HTTPS 二.FTP(文件传输协议) 三.SMTP(简单邮件传输协议) 四.POP3(邮局协议版本3) 五.IMAP(互联网消息访问协议) 六.DNS&am…...

解决docker容器无法关闭的问题

一般正常关闭: docker stop 容器ID解决方法 方法1:强制停止docker kill 容器ID方法2:直接重启dockersudo service docker stop方法3:直接删除容器,重新创建docker rm -f my_container...

2023-09-27 LeetCode每日一题(餐厅过滤器)

2023-09-27每日一题 一、题目编号 1333. 餐厅过滤器二、题目链接 点击跳转到题目位置 三、题目描述 给你一个餐馆信息数组 restaurants,其中 restaurants[i] [idi, ratingi, veganFriendlyi, pricei, distancei]。你必须使用以下三个过滤器来过滤这些餐馆信息…...

梯度下降法(SGD)原理

目录 梯度下降法(SGD)原理:求偏导 1. 梯度(在数学上的定义) 2. 梯度下降法迭代步骤 BGD批量梯度下降算法 BGD、SGD在工程选择上的tricks 梯度下降法(SGD)原理:求偏导 1. 梯度(在数学上的定义) 表示某一函数在该点处的方向导数沿着该方向取得最大值…...

QQ表情包存储位置解析

一些常见的设备和系统的QQ表情包存储位置: Windows系统: 路径:C:\Users[用户名]\Documents\Tencent Files[QQ号码]\Image\Image\CustomFace 在这个文件夹中,您可以找到所有自定义的QQ表情包。 Android系统: 路径&am…...

软件架构的演化和维护

软件架构的演化和维护 定义 定义 顶不住了,刷题去了,不搞这个了,想吐。。。...

C语言数组和指针笔试题(四)(一定要看)

目录 二维数组例题一例题二例题三例题四例题五例题六例题七例题八例题九例题十例题十一 结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒个人主页 🥸🥸🥸C语言 🐿️…...

FragmentManager is already executing transactions

本文解决问题: java.lang.IllegalStateException: FragmentManager is already executing transactions 问题背景描述: 在Fragment中 用tablayoutviewpagerfragment,即Fragment嵌套Fragment场景、或者ViewPager2嵌套ViewPager2时。 执行生命…...

Matlab中clear,close all,clc功能详细说明

背景: 我们在写matlab程序时,首行总是先敲入:clear; close all; clc;,但你真的知道这三句话的具体作用嘛,下面进行详细说明和演示。 一、clear的功能 clear的功能:清理工作区变量,不清理前是…...

Typora安装无需破解免费使用

Typora简介: 在介绍Typora软件之前,需要先介绍一下MARKDOWN。 MARKDOWN是一种轻量型标记语言,它具有“极简主义”、高效、清晰、易读、易写、易更改纯文本的特点。 Typora 是一款支持实时预览的 Markdown 文本编辑器。它有 OS X、Windows、…...

LuatOS-SOC接口文档(air780E)--errDump - 错误上报

示例 -- 基本用法, 10分钟上报一次,如果有的话 if errDump thenerrDump.config(true, 600) end-- 附开源服务器端: https://gitee.com/openLuat/luatos-devlogerrDump.dump(zbuff, type, isDelete) 手动读取异常日志,主要用于用户将日志发送给自己的服务器而不是I…...

低代码平台如何助力国内企业数字化转型?

数字化是什么 数字化(Digitalization)是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理&#xf…...

SI3262—高度集成的低功耗SOC芯片

Si3262是一款高度集成的低功耗SOC芯片,其集成了基于RISC-V核的低功耗MCU和工作在13.56MHz的非接触式读写器模块。 MCU模块具有低功耗、Low Pin Count、宽电压工作范围,集成了13/14/15/16位精度的ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、TSC等…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如&#xff1a…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

管理学院权限管理系统开发总结

文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...