当前位置: 首页 > news >正文

梯度下降法(SGD)原理

目录

梯度下降法(SGD)原理:求偏导

1. 梯度(在数学上的定义)

2. 梯度下降法迭代步骤

BGD批量梯度下降算法

BGD、SGD在工程选择上的tricks


梯度下降法(SGD)原理:求偏导

1. 梯度(在数学上的定义)

表示某一函数在该点处方向导数沿着该方向取得最大值(即最大方向导数的方向),也就是函数在该点处沿着该方向变化最快,变化率最大(为该梯度的模)。

梯度下降

2. 梯度下降法迭代步骤

梯度下降的一个直观的解释:
比如我们在一座大山上的 某处位置,由于我们不知道怎么下山,于是决定 走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度, 沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后 继续求解当前位置梯度,向这一步所在位置沿着 最陡峭最易下山的位置走一步。 这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了 某一个局部的山峰低处

BGD批量梯度下降算法

是一种基于梯度的优化方法,其工作原理是通过多次迭代来寻找误差函数的最小值。在每次迭代中,算法会基于一组训练样本计算误差函数的梯度,并在此基础上更新模型参数。由于BGD算法在每次迭代时都需要计算所有训练样本的梯度,因此它通常会对内存和计算资源产生较大的压力。

相对于其他梯度下降算法,BGD具有以下优点:

  • 能够在较短时间内获得较好的收敛效果。
  • 通常能够避免陷入局部最小值的情况。
  • 具有较强的鲁棒性,能够处理较大的输入数据集。

尽管BGD算法具有上述优势,但仍然存在一些需要注意的问题。其中一个重要的问题是算法收敛速度的慢。由于每次迭代都需要计算所有训练样本的梯度,因此算法的收敛速度往往较慢。此外,BGD算法不容易处理在线学习问题,因为在线学习通常需要对单个样本进行计算,而批量梯度下降算法需要对所有样本进行计算。

为了解决BGD算法的上述问题,研究人员提出了一些变体算法。其中最常见的是随机梯度下降(SGD)算法。与BGD算法不同,SGD算法在每次迭代时只计算单个训练样本的梯度,从而大大提升了算法的计算速度。此外,SGD算法还能够较好地处理在线学习问题,因为它只需要对单个样本进行计算。

总之,BGD算法是一种常用的机器学习算法,适用于大规模数据集的优化。虽然存在一些缺点,但可以通过一些变体算法来加以解决。在实际应用中,我们应该根据数据集大小和问题要求选择最合适的优化算法。

BGD、SGD在工程选择上的tricks

BGD:相对噪声低些,幅度也大一些,你可以继续找最小值。
SGD:大部分时候你向着全局最小值靠近,有时候你会远离最小值,因为那个样本恰好给你指的方向不对,因此SGD是有很多噪声的,平均来看,它最终会靠近最小值,不过有时候也会方向错误,因为SGD永远不会收敛,而是会一直在最小值附近波动。一次性只处理了一个训练样本,这样效率过于低下。
mini-batch:实践中最好选择不大不小的 mini-batch,得到了大量向量化,效率高,收敛快。

调节 Batch_Size 对训练效果影响到底如何?

  1. Batch_Size 太小,模型表现效果极其糟糕(error飙升)。
  2. 随着 Batch_Size 增大,处理相同数据量的速度越快。
  3. 随着 Batch_Size 增大,达到相同精度所需要的 epoch 数量越来越多。
  4. 由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。
  5. 由于最终收敛精度会陷入不同的局部极值,因此 Batch_Size 增大到某些时候,达到最终收敛精度上的最优。

如果训练集较小(小于 2000 个样本),直接使用BGD法,一般的 mini-batch 大小为 64 到 512,考虑到电脑内存设置和使用的方式,如果 mini-batch 大小是 2� ,代码会运行地快一些。

 梯度下降法(SGD)原理解析及其改进优化算法 - 知乎

相关文章:

梯度下降法(SGD)原理

目录 梯度下降法(SGD)原理:求偏导 1. 梯度(在数学上的定义) 2. 梯度下降法迭代步骤 BGD批量梯度下降算法 BGD、SGD在工程选择上的tricks 梯度下降法(SGD)原理:求偏导 1. 梯度(在数学上的定义) 表示某一函数在该点处的方向导数沿着该方向取得最大值…...

QQ表情包存储位置解析

一些常见的设备和系统的QQ表情包存储位置: Windows系统: 路径:C:\Users[用户名]\Documents\Tencent Files[QQ号码]\Image\Image\CustomFace 在这个文件夹中,您可以找到所有自定义的QQ表情包。 Android系统: 路径&am…...

软件架构的演化和维护

软件架构的演化和维护 定义 定义 顶不住了,刷题去了,不搞这个了,想吐。。。...

C语言数组和指针笔试题(四)(一定要看)

目录 二维数组例题一例题二例题三例题四例题五例题六例题七例题八例题九例题十例题十一 结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒个人主页 🥸🥸🥸C语言 🐿️…...

FragmentManager is already executing transactions

本文解决问题: java.lang.IllegalStateException: FragmentManager is already executing transactions 问题背景描述: 在Fragment中 用tablayoutviewpagerfragment,即Fragment嵌套Fragment场景、或者ViewPager2嵌套ViewPager2时。 执行生命…...

Matlab中clear,close all,clc功能详细说明

背景: 我们在写matlab程序时,首行总是先敲入:clear; close all; clc;,但你真的知道这三句话的具体作用嘛,下面进行详细说明和演示。 一、clear的功能 clear的功能:清理工作区变量,不清理前是…...

Typora安装无需破解免费使用

Typora简介: 在介绍Typora软件之前,需要先介绍一下MARKDOWN。 MARKDOWN是一种轻量型标记语言,它具有“极简主义”、高效、清晰、易读、易写、易更改纯文本的特点。 Typora 是一款支持实时预览的 Markdown 文本编辑器。它有 OS X、Windows、…...

LuatOS-SOC接口文档(air780E)--errDump - 错误上报

示例 -- 基本用法, 10分钟上报一次,如果有的话 if errDump thenerrDump.config(true, 600) end-- 附开源服务器端: https://gitee.com/openLuat/luatos-devlogerrDump.dump(zbuff, type, isDelete) 手动读取异常日志,主要用于用户将日志发送给自己的服务器而不是I…...

低代码平台如何助力国内企业数字化转型?

数字化是什么 数字化(Digitalization)是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理&#xf…...

SI3262—高度集成的低功耗SOC芯片

Si3262是一款高度集成的低功耗SOC芯片,其集成了基于RISC-V核的低功耗MCU和工作在13.56MHz的非接触式读写器模块。 MCU模块具有低功耗、Low Pin Count、宽电压工作范围,集成了13/14/15/16位精度的ADC、LVD、UART、SPI、I2C、TIMER、WUP、IWDG、RTC、TSC等…...

除静电离子风机在无尘车间的应用

除静电离子风机在无尘车间中的应用非常广泛,主要是用来控制车间内的静电荷,防止静电对车间内的电子元器件、电路板等敏感部件产生损害。 具体来说,除静电离子风机通常采用电离器产生大量负离子,将车间内的静电荷中和成无害的水蒸气…...

Linux上的Pip和Python升级指南

在Linux系统上,保持Pip和Python版本的最新状态对于顺利进行Python开发至关重要。通过升级Pip和Python,你可以享受到最新的功能、修复的bug以及提升的开发效率。本文将为你提供在Linux上升级Pip和Python的详细指南,助你打造更强大的开发环境。…...

4G工业路由器高效数据传输助力光伏发电站管理

光伏发电站是能源产业中一种利用太阳能技术将光转化为电能的常见设施。随着物联网技术与环保能源的不断进步和应用的普及,光伏发电站的管理也变得更加便捷高效。 光伏发电站结合4G工业路由器实现远程监控管理,并用于采集发电站中的传感器数据和监控信息…...

【音视频笔记】Mediacodec+Muxer生成mp4,浏览器无法播放问题处理

文章目录 背景解决过程曲线修复方案 解决问题根源 背景 最近在测试视频录制功能时发现,AudioRecord MediaCodec MediaMuxer生成的MP4,PC浏览器无法播放 ,但是Android、Windows、Mac的播放器应用都能正常播放。虽然不禁想吐槽浏览器视频组件…...

debug过程中,矩阵左乘右乘相关概念梳理

1. 变换点或者变换向量 1.1左乘 矩阵左乘通常是指对”目标点“进行左乘,即: A ′ R ∗ A AR*A A′R∗A 其中,A为原始3维点,表示一个3*1的列向量,R为33的旋转矩阵,A‘为变换后的点 B ′ T ∗ B BT*B B′T∗B 其中…...

Ubuntu 安装Kafka

在本指南中,我们将逐步演示如何在 Ubuntu 22.04 上安装 Apache Kafka。 在大数据中,数以百万计的数据源生成了大量的数据记录流,这些数据源包括社交媒体平台、企业系统、移动应用程序和物联网设备等。如此庞大的数据带来的主要挑战有两个方面…...

洗地机性价比高的是哪款?高性价比洗地机排名

洗地机已成为当下备受欢迎的智能家电之一,但在挑选合适的洗地机时,面对各种新词汇和功能选择,可能会让人感到困惑。因此,为了帮助大家在购买洗地机时不踩坑,我们基于市面上主流品牌的综合分析对比,总结出来…...

安装konga

创建konga数据库 docker run --rm pantsel/konga:latest -c prepare -a postgres -u postgresql://kong:kong{IP}:5432/konga这里要注意docker部署时IP不能直接访问localhost 安装konga docker run -p 1337:1337 \--network kong-net \--name konga \-e "NODE_ENVprodu…...

算法基础之高精度总结

目录 高精度算法分类 高精度加减乘除的异同点 加和乘 相同点 减和除 相同点 不同点 处理前导0的方式 高精度算法分类 分类:加、减、乘、除 其中加减乘都适用于两个数都是高精度,除法因为除数是高精度的话不好用整除的方法,所以除法时…...

oracle TNS Listener 远程投毒漏洞修复

有个客户在等保测评过程,测评公司扫出一个关于oracle的漏洞如下: 客户是RAC环境11.2.0.4,在生产修复漏洞前我做了如下测试验证: 测试环境准备: RAC一套11.2.0.4 实例名dbserver [oraclehisdb1 ~]$ cat /etc/hosts …...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...