【Pytorch笔记】3.数学运算
深度之眼官方账号 - 01-03-mp4-张量操作与线性回归
torch.add()
功能:逐元素计算input+alpha×other。
torch.add(input,alpha=1,other,out=None)
input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。
import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)
输出:
tensor([[4, 5],[8, 9]])
torch.sub()
功能:逐元素计算input-alpha×other。
torch.sub(input,alpha=1,other,out=None)
input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。
import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)
输出:
tensor([[0, 1],[0, 1]])
torch.mul()
功能:逐元素计算 o u t i = i n p u t i × o t h e r i out_i=input_i \times other_i outi=inputi×otheri
torch.mul(input,other)
input:tensor;
other:和input同样尺寸的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。
import torcht1 = torch.tensor([[9, 12], [15, 18]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.mul(t1, other=t2)
print(t)
输出:
tensor([[27, 36],[30, 36]])
torch.div()
功能:逐元素计算 o u t i = i n p u t i o t h e r out_i=\frac{input_i}{other} outi=otherinputi
torch.div(input,other)
input:tensor;
other:和input同样尺寸的、元素不能为0的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。
import torcht1 = torch.tensor([[9, 12], [4, 6]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.div(t1, other=t2)
print(t)
输出:
tensor([[3., 4.],[2., 3.]])
torch.addcmul()
功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i × t e n s o r 2 i out_i=input_i+value \times tensor1_i \times tensor2_i outi=inputi+value×tensor1i×tensor2i
torch.addcmul(input,value=1,tensor1,tensor2,out=None)
input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状的tensor,见公式。
import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcmul(t1, value=2, tensor1=t2, tensor2=t3)
print(t)
输出:
tensor([[18., 27.],[36., 45.]])
torch.addcdiv()
功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i t e n s o r 2 i out_i=input_i+value \times\frac{tensor1_i}{tensor2_i} outi=inputi+value×tensor2itensor1i。
torch.addcdiv(input,value=1,tensor1,tensor2,out=None)
input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状但是元素中不能出现0的tensor,见公式。
注:input、tensor1、tensor2的内容需要是浮点型。如果使用整数会报如下错误:
RuntimeError: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes.
import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcdiv(t1, value=2, tensor1=t2, tensor2=t3)
print(t)
输出:
tensor([[ 6., 9.],[12., 15.]])
torch.log()
功能:逐元素求解 o u t i = l o g e ( i n p u t i ) out_i=log_e(input_i) outi=loge(inputi)。
torch.log(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log(t1)
print(t)
输出:
tensor([[2.1972, nan],[2.7081, 2.8904]])
torch.log10()
功能:逐元素求解 o u t i = l o g 10 ( i n p u t i ) out_i=log_{10}(input_i) outi=log10(inputi)。
torch.log10(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log10(t1)
print(t)
输出:
tensor([[0.9542, nan],[1.1761, 1.2553]])
torch.log2()
功能:逐元素求解 o u t i = l o g 2 ( i n p u t i ) out_i=log_2(input_i) outi=log2(inputi)。
torch.log2(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[8., -12.], [16., 18.]])
t = torch.log2(t1)
print(t)
输出:
tensor([[3.0000, nan],[4.0000, 4.1699]])
torch.exp()
功能:逐元素求解 o u t i = e i n p u t i out_i=e^{input_i} outi=einputi。
torch.exp(input,out=None)
input:待求解的tensor。
import math
import torcht1 = torch.tensor([[-2., 0.], [1., math.log(2.)]])
t = torch.exp(t1)
print(t)
输出:
tensor([[0.1353, 1.0000],[2.7183, 2.0000]])
torch.pow()
功能:逐元素求解 o u t i = x i e x p o n e n t i out_i=x_i^{exponent_i} outi=xiexponenti
torch.pow(input,exponent,out=None)
input:待求解的tensor。
exponent:与input相同形状的tensor。
如果exponent是一个数,torch会广播成一个和input相同形状的tensor。
import torcht1 = torch.tensor([[1., 2.], [3., 4.]])
t2 = torch.tensor([[3., 2.], [4., 2.]])
t3 = torch.pow(t1, 2.)
t4 = torch.pow(t1, t2)
print(t3)
print(t4)
输出:
tensor([[ 1., 4.],[ 9., 16.]])
tensor([[ 1., 4.],[81., 16.]])
tensor.abs()
功能:逐元素取绝对值, o u t i = ∣ i n p u t i ∣ out_i=|input_i| outi=∣inputi∣。
torch.abs(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[1., -2.], [-3., 4.]])
t = torch.abs(t1)
print(t)
输出:
tensor([[1., 2.],[3., 4.]])
tensor.acos()
功能:逐元素求解 o u t i = c o s − 1 ( i n p u t i ) out_i=cos^{-1}(input_i) outi=cos−1(inputi)。
torch.acos(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.acos(t1)
print(t)
输出:
tensor([ 0.5100, 0.1678, -0.0250, 0.3119])
tensor([1.0357, 1.4022, 1.5958, 1.2536])
torch.cosh()
功能:逐元素求解 o u t i = c o s h ( i n p u t i ) out_i=cosh(input_i) outi=cosh(inputi)
注: c o s h ( x ) = e x + e − x 2 cosh(x)=\frac{e^x+e^{-x}}{2} cosh(x)=2ex+e−x
torch.cosh(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.cosh(t1)
print(t)torch.cosh(input,out=None)
输出:
tensor([-0.3447, -0.2875, -0.2717, -1.3635])
tensor([1.0600, 1.0416, 1.0371, 2.0828])
torch.cos()
功能:逐元素求解 o u t i = c o s ( i n p u t i ) out_i=cos(input_i) outi=cos(inputi)
torch.cos(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.cos(t1)
print(t)torch.cosh(input,out=None)
输出:
tensor([-0.6443, -0.8991, 1.2432, -0.3162])
tensor([0.7995, 0.6223, 0.3218, 0.9504])
torch.asin()
功能:逐元素求解 o u t i = s i n − 1 ( i n p u t i ) out_i=sin^{-1}(input_i) outi=sin−1(inputi)
torch.asin(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.asin(t1)
print(t)
输出:
tensor([-0.7372, -0.0238, -1.8213, -0.0912])
tensor([-0.8289, -0.0238, nan, -0.0913])
torch.atan()
功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i ) out_i=tan^{-1}(input_i) outi=tan−1(inputi)
torch.atan(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.atan(t1)
print(t)
输出:
tensor([ 0.3620, -0.6551, 1.0304, 2.1545])
tensor([ 0.3474, -0.5799, 0.8003, 1.1362])
torch.atan2()
功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i o t h e r i ) out_i=tan^{-1}(\frac{input_i}{other_i}) outi=tan−1(otheriinputi)
torch.atan(input,other,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t2 = torch.randn(4)
print(t2)
t = torch.atan2(t1, t2)
print(t)
输出:
tensor([ 1.9372, 0.7993, -1.4123, 0.4260])
tensor([-1.5106, 1.2147, -1.4479, 0.1674])
tensor([ 2.2331, 0.5820, -2.3686, 1.1963])
相关文章:
【Pytorch笔记】3.数学运算
深度之眼官方账号 - 01-03-mp4-张量操作与线性回归 torch.add() 功能:逐元素计算inputalphaother。 torch.add(input,alpha1,other,outNone)input:tensor; alpha:other的系数,是个实数; other࿱…...
MeterSphere 监控方案
前言:在部署MeterSphere之后,很多时候需要看下MeterSphere服务的监控信息,虽然有监控告警脚本,但还不是太直观,所以就结合 PrometheusExporterGrafana 部署一套完整的MeterSphere监控方案。 首先我们先罗列一下需要监控…...
elementui-plus+ts+axios使用el-upload组件自定义上传
1.前言: 使用element ui有很多便捷之处,但是由于是封装的组件和自己写还是有些许的不一样,这里主要解决几个问题。 1. 如何获取子组件实例 2. 如何自定义上传方法 2.两个问题: ⛺️ 获取子组件实例 实际上vue一般通过ref获取子组…...
【STM32单片机】u8g2智能风扇设计
文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器,使用按键、IIC OLED模块、DS18B20温度传感器、直流电机、红外遥控等。 主要功能: 初始化后进入温度显示界面,系统初始状态为手动…...
Java中的IO流的缓冲流
不爱生姜不吃醋⭐️ 如果本文有什么错误的话欢迎在评论区中指正 与其明天开始,不如现在行动! 文章目录 🌴IO流体系结构🌴缓冲流1.提高效率的原理2.缓冲流的类型3.字符缓冲流两个特有方法 🌴总结 🌴IO流体系…...
7、SpringBoot_高级配置
一、配置高级 1.临时属性设置 1.1引出问题 如果目标电脑上8080端口已经使用,再次使用该端口会出现端口占用问题 解决方式 重新更换配置文件修改端口打包通过临时属性配置新端口更换配置文件 1.2添加临时属性配置 通过临时属性修改8080端口 java -jar 项目.jar…...
cocos2dx查看版本号的方法
打开文件:项目根目录\frameworks\cocos2d-x\docs\RELEASE_NOTES.md 知道引擎版本号的意义: 1.面试中经常被问到(面试官想知道你会不会查版本号,你会查也不一定会去看,如果你去看了说明你是一个有心人,或者想深入研究下…...
某高校的毕设
最近通过某个平台接的单子,最后Kali做的测试没有公开可以私聊给教程。 下面是规划与配置 1.vlan方面:推荐一个vlan下的所有主机为一个子网网段 连接电脑和http客户端的接口配置为access接口 交换机与交换机或路由器连接的接口配置为trunk接口---也可以…...
利用uvicorn、Starlette和pipeline将一个训练好的大模型发布成一个web服务
技术名词: 1、Starlette: 它是一个轻量级、高度可用性和可扩展性的Web框架,它专门为异步应用程序设计。 Starlette基于Python 3.6的异步/协程语法,具有快速响应性能和低延迟。你可以将它理解为Java的Spring。 安装:…...
贝赛尔曲线 - Vue3实现加入购物车抛物线效果组件
贝赛尔曲线 - Vue3实现加入购物车抛物线效果组件(可连续多个动画,动态回收DOM) 前言 在前几天的一次迭代中,我遇到了这么一个需求,模仿支付宝首页应用中心的编辑功能,支持编辑首页展示的应用,…...
AddressSanitizer failed to allocate 0xdfff0001000 (15392894357504) bytes解决方法
打开一个编译选项启用ASan的程序: AddressSanitizer failed to allocate 0xdfff0001000 (15392894357504) bytes然后程序启动失败。 原因: [cfe-dev] Question about Clang/LLVM addresssanitizer /proc/sys/vm/overcommit_memory是一个用于控制内存…...
Fortinet 2023上半年全球威胁态势研究报告:勒索软件检测成下降趋势,针对性攻击持续升温
近日,专注于推动网络与安全融合的全球网络安全领导者Fortinet(NASDAQ:FTNT),发布《2023上半年全球威胁态势研究报告》。报告显示,2023 年上半年勒索软件检出数量继续下降、高级持续性威胁(APT&a…...
MySQL ——多表连接查询
一、(左、右和全)连接概念 内连接: 假设A和B表进行连接,使用内连接的话,凡是A表和B表能够匹配上的记录查询出来。A和B两张表没有主付之分,两张表是平等的。 关键字:inner join on 语句…...
前沿技术 --> 待定
一、可会可不会 1.1如何优雅的编写技术文档 网址: 如何优雅的编写技术文档? - YouTube...
Linux定时python脚本(crontab版本)
1.0 使用Linux系统命令 crontab 自带的定时命令2.0 crontab的使用 2.1 添加定时任务 crontab -e2.2 查看定时任务的完成情况 2.2.1 查看日志 tail -f /var/log/syslog | grep CRON 2.2.2 任务执行情况 grep CRON /var/log/syslog 2.3 定时任务的规则 每隔一分钟执行一次…...
修改 Ubuntu .cache 和 pip cache 默认路径
修改 Ubuntu .cache 和 pip cache 默认路径 非常不建议修改 .cache 默认路径,除非你知道修改后的影响。 执行下面命令进行修改, vi /root/.bashrc--- 追加 export XDG_CACHE_HOME/u01/.cache export PIP_CACHE_DIR/u01/.cache ---完结!...
【Java SE】Lambda表达式
目录 ♫什么是Lambda表达式 ♫Lambda表达式的语法 ♫函数式接口 ♫Lambda表达式的使用 ♫变量捕获 ♫ Lambda表达式在集合中的使用 ♪Collection的foreach(): ♪List的sort(): ♪Map的foreach() ♫什么是Lambda表达式 Lambda 表达式是 Java SE 8中一个…...
Kafka-UI
有多款kafka管理应用,目前选择的是github上star最多的UI for Apache Kafka。 关于 To run UI for Apache Kafka, you can use either a pre-built Docker image or build it (or a jar file) yourself. UI for Apache Kafka is a versatile, fast, and lightweight…...
Unity 制作登录功能02-创建和链接数据库(SQlite)
国际惯例:先看效果 1.SQlite是一种嵌入型数据库 在Unity开发游戏时使用SQLite有多种原因,以下是其中一些主要原因: 嵌入式数据库:SQLite是一个嵌入式数据库引擎,这意味着它不需要单独的服务器进程。这使得使用SQLite非…...
算法 岛屿数量-(递归回溯)
牛客网 BM57. 二维矩阵,值为1表示岛屿,0表示海洋,求海洋中岛屿数量。 解题思路: 遍历二维数组,值为1增加岛屿数量记数,同时对此位置进行单独递归遍历上下左右4个方向,将数组坐标范围内同时值为1的元素置…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
