当前位置: 首页 > news >正文

【学习笔记】LOJ #6240. 仙人掌

毒瘤题😅

简单版本 CF235D Graph Game

首先,考虑建立圆方树,然后对于一个点双(简单环)上的两个点,有两条路径可以到达

和简单版本类似,考虑容斥。即枚举点对 i , j i,j i,j之间 哪些路径是联通的 ,记固定下来的路径的并为 A A A,则 i , j i,j i,j之间通过 A A A联通的概率为 1 ∣ A ∣ \frac{1}{|A|} A1

然后就是神来之笔了:设 A A A中有 c n t cnt cnt个环,则容斥系数为 ( − 1 ) c n t (-1)^{cnt} (1)cnt。证明:考虑 i , j i,j i,j之间实际有 k k k个环,则这个方案被计算了 ∑ x ≤ k 2 x ( k x ) ( − 1 ) k − x = ( 2 − 1 ) k = 1 \sum_{x\le k}2^x\binom{k}{x}(-1)^{k-x}=(2-1)^k=1 xk2x(xk)(1)kx=(21)k=1次。

考虑在圆方树上 D P DP DP。因为点对之间的 L C A LCA LCA可能是方点或者圆点,因此不好统计。可以考虑直接枚举其中一个点,然后跑 D F S DFS DFS,复杂度 O ( n 3 ) O(n^3) O(n3)

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define db double
using namespace std;
const int mod=998244353;
const int N=805;
int n,m,tot;
vector<int>G[N];
int dfn[N],low[N],ps[N][N],num;
ll res;
stack<int>s;
vector<int>G2[N];
void tarjan(int u){low[u]=dfn[u]=++num,s.push(u);for(auto v:G[u]){if(!dfn[v]){tarjan(v),low[u]=min(low[u],low[v]);if(low[v]>=dfn[u]){int tmp=0,d=0;tot++,G2[u].pb(tot),G2[tot].pb(u),ps[tot][u]=d++;do{tmp=s.top(),s.pop();G2[tot].pb(tmp),G2[tmp].pb(tot),ps[tot][tmp]=d++;}while(tmp!=v);}}else low[u]=min(low[u],dfn[v]);}
}
ll fpow(ll x,ll y=mod-2){ll z(1);for(;y;y>>=1){if(y&1)z=z*x%mod;x=x*x%mod;}return z;
}
ll f[N][N],fac[N],inv[N],invnum[N];
void init(int n){fac[0]=1;for(int i=1;i<=n;i++)fac[i]=fac[i-1]*i%mod;inv[n]=fpow(fac[n]);for(int i=n;i>=1;i--)inv[i-1]=inv[i]*i%mod;for(int i=1;i<=n;i++)invnum[i]=inv[i]*fac[i-1]%mod;
}
void add(ll &x,ll y){x=(x+y)%mod;
}
int sz[N];
void dfs(int u,int topf,int sz){for(int i=1;i<=sz;i++){if(f[u][i])add(res,invnum[i]*f[u][i]);}for(auto e:G2[u]){if(e==topf)continue;for(int i=0;i<G2[e].size();i++){if(i==ps[e][u])continue;int v=G2[e][i],l1=abs(ps[e][u]-ps[e][v])-1,l2=G2[e].size()-2-l1;for(int i=1;i<=sz;i++){add(f[v][i+l1+1],f[u][i]);add(f[v][i+l2+1],f[u][i]);add(f[v][i+l1+l2+1],-f[u][i]);}dfs(v,e,sz+l1+l2+1);}}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n>>m,init(n),tot=n;for(int i=1;i<=m;i++){int x,y;cin>>x>>y;G[x].pb(y),G[y].pb(x);}tarjan(1);for(int i=1;i<=n;i++){memset(f,0,sizeof f),f[i][1]=1,dfs(i,-1,1); }cout<<(res+mod)%mod;
}

相关文章:

【学习笔记】LOJ #6240. 仙人掌

毒瘤题&#x1f605; 简单版本 CF235D Graph Game 首先&#xff0c;考虑建立圆方树&#xff0c;然后对于一个点双&#xff08;简单环&#xff09;上的两个点&#xff0c;有两条路径可以到达 和简单版本类似&#xff0c;考虑容斥。即枚举点对 i , j i,j i,j之间 哪些路径是联…...

java通过接口转发文件(上传下载)

java接口转发上传的文件 RequestMapping(value "/XXXX/fileUpload", method RequestMethod.POST) public String getFileUpload2(RequestParam("file") MultipartFile file, HttpServletRequest request) public static String hotMapPost3(String ur…...

Docker-部署docker-compose以及管理服务

部署docker-compose以及管理服务 文章目录 部署docker-compose以及管理服务[TOC] 前言一、docker-compose是什么&#xff1f;1、介绍2、 功能 二、安装docker-compose1.yum直接安装2.二进制安装3.pip安装 三、docker-compose部署服务1.编写docker-compose.yml文件 总结 前言 D…...

Android - Monkey 测试应用出现Crash报错IllegalStateException

问题描述 平时使用Lottie动画都是正常的&#xff0c;没出过这个crash问题&#xff0c;看下的报错信息&#xff0c;代码中文件夹也设置了&#xff0c;没看出来问题。 AndroidRuntime: java.lang.IllegalStateException: You must set an images folder before loading an imag…...

Spring源码分析 事务 实现原理

文章目录 什么是事务Spring事务管理Spring事务实现原理事务管理器事务定义事务的开启事务核心方法业务代码使用事务TransactionInterceptor 什么是事务 一般所指的事务是数据库事务&#xff0c;是指一批不可分割的数据库操作序列&#xff0c;也是数据库并发控制的基本单位。其…...

ADS-B及雷达显示终端8.3

新版本功能升级主要有如下: 1、地图更新 在上一版本8.2中使用的高程地图为由SRTM经过地形晕渲后&#xff0c;生成地形图片&#xff0c;然后对图片进行贴图&#xff0c;一一按规定位置、大小将地形图贴至底图上&#xff0c;而后在底图上进行二维矢量地图的绘制&#xff0c;包括…...

第二章:最新版零基础学习 PYTHON 教程(第二节 - Python 输入/输出–从 Python 控制台获取输入)

目录 Python 中的控制台是什么? 接受来自控制台的输入: 1. 将输入类型转换为整数:...

linux安装配置 flume

目录 一 解压安装包 二 配置部署 &#xff08;1&#xff09;修改配置 &#xff08;2&#xff09;下载工具 &#xff08;3&#xff09;创建配置文件 &#xff08;4&#xff09;启动监听测试 &#xff08;5&#xff09;flume监控文件 一 解压安装包 这里提供了网盘资源 链…...

SSM - Springboot - MyBatis-Plus 全栈体系(十五)

第三章 MyBatis 二、MyBatis 基本使用 4. CRUD 强化练习 4.1 准备数据库数据 首先&#xff0c;我们需要准备一张名为 user 的表。该表包含字段 id&#xff08;主键&#xff09;、username、password。创建SQL如下&#xff1a; CREATE TABLE user (id INT(11) NOT NULL AUT…...

win10默认浏览器改不了怎么办,解决方法详解

win10默认浏览器改不了怎么办&#xff0c;解决方法详解_蓝天网络 在使用Windows 10操作系统时&#xff0c;你可能会遇到无法更改默认浏览器的情况。这可能是因为其他程序或设置正在干扰更改。如果你也遇到了这个问题&#xff0c;不要担心&#xff0c;本文将为你提供详细的解决…...

C语言连接MySQL并执行SQL语句(hello world)

1.新建一个控制台项目 参考【VS2022 和 VS2010 C语言控制台输出 Hello World】VS2022 和 VS2010 C语言控制台输出 Hello World_vs2022源文件在哪_西晋的no1的博客-CSDN博客 2.安装MySQL 参考【MySQL 8.0.34安装教程】MySQL 8.0.34安装教程_西晋的no1的博客-CSDN博客 3.复制MySQ…...

react实现动态递增展示数字特效

在可视化展示界面时有一种场景&#xff0c;就是页面在初始化的时候&#xff0c;有些数字展示想要从某个值开始动态递增到实际值&#xff0c;形成一种动画效果。例如&#xff1a; 写一个数字递增的组件&#xff0c;有两种方式&#xff1a;1.固定步长&#xff0c;代码如下&#x…...

读取.nrrd和.dcm文件格式医学图片可视化与预处理

nrrd数据格式 MITK默认会将医学图像保存为格式为NRRD的图像&#xff0c;在这个数据格式中包含&#xff1a; 1、一个单个的数据头文件&#xff1a;为科学可视化和医学图像处理准确地表示N维度的栅格信息。 2、既能分开又能合并的图像文件。 nrrd_options输出 {u’dimension’:…...

VS CODE中的筛选器如何打开?

最近更新了vscode1.82版本&#xff0c;发现在git管理界面有一个“筛选器”功能&#xff0c;十分好用&#xff0c;后来关掉了&#xff0c;找了好久都没有找到办法打开这个筛选器功能&#xff0c;今天无意中不知道按到了哪个快捷键&#xff0c;打开了&#xff0c;就是下图这个&am…...

vue 多环境文件配置(开发,测试,生产)

1.经常我们在开发时候会有不同环境&#xff0c;要代理的路由等等都会出现不同 配置一下三个文件打包的时候&#xff0c;执行三个不同的指令就会打包不同的环境 npm run build:dev npm run build:test npm run build:prodpackage.json 中配置scripts 指令 以,env.development…...

在服务器上搭建pulseaudio的运行环境,指定其运行目录、状态目录和模块目录

如果想在搭建 PulseAudio 的服务器上指定其运行目录、状态目录和模块目录&#xff0c;可以通过修改 PulseAudio 的配置文件来实现。一般情况下所涉及的配置文件和相关选项如下所示&#xff1a; 1、配置文件路径&#xff1a;通常情况下&#xff0c;PulseAudio 的配置文件位于 /…...

[Qt]QListView 重绘实例之一:背景重绘

0 环境 Windows 11Qt 5.15.2 MinGW x64 1 系列文章 简介&#xff1a;本系列文章&#xff0c;是以纯代码方式实现 Qt 控件的重构&#xff0c;尽量不使用 Qss 方式。 《[Qt]QListView 重绘实例之一&#xff1a;背景重绘》 《[Qt]QListView 重绘实例之二&#xff1a;列表项覆…...

国庆周《Linux学习第二课》

Linux开篇指南针环境安装(第一课)-CSDN博客 Linux详细的环境安装介绍在上面 第一 环境准备过程 安装过程...

6年前的麒麟980依旧可以再战

麒麟980&#xff0c;使用6年后的今天&#xff0c;我对它进行跑分测试。 在bench旗下的VRMark跑分中&#xff0c;麒麟980荣获5023分&#xff0c;同款跑分APP&#xff0c;要知道同一时期的高通骁龙855只有4937分&#xff0c; 打游戏&#xff0c;以和平精英为例&#xff0c;帧率3…...

JS计算任意多边形的面积

计算任意多边形的面积需要使用一些几何数学公式。具体的计算方法取决于多边形的形状和提供的顶点坐标。下面是一个通用的 JavaScript 函数&#xff0c;用于计算任意多边形的面积&#xff0c;假设你提供多边形的顶点坐标数组&#xff1a; function calculatePolygonArea(vertic…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...