当前位置: 首页 > news >正文

二、C++项目:仿muduo库实现并发服务器之时间轮的设计

文章目录

  • 一、为什么要设计时间轮?
    • (一)简单的秒级定时任务实现:
    • (二)Linux提供给我们的定时器:
      • 1.原型
      • 2.例子
  • 二、时间轮
    • (一)思想
    • (一)代码

一、为什么要设计时间轮?

(一)简单的秒级定时任务实现:

在当前的高并发服务器中,我们不得不考虑⼀个问题,那就是连接的超时关闭问题。我们需要避免⼀个连接长时间不通信,但是也不关闭,空耗资源的情况。
这时候我们就需要⼀个定时任务,定时的将超时过期的连接进行释放。

(二)Linux提供给我们的定时器:

1.原型

#include <sys/timerfd.h>
int timerfd_create(int clockid, int flags);clockid: CLOCK_REALTIME-系统实时时间,如果修改了系统时间就会出问题; CLOCK_MONOTONIC-从开机到现在的时间是⼀种相对时间;flags: 0-默认阻塞属性int timerfd_settime(int fd, int flags, struct itimerspec *new, struct itimerspec *old);fd: timerfd_create返回的⽂件描述符flags: 0-相对时间, 1-绝对时间;默认设置为0即可.new: ⽤于设置定时器的新超时时间old: ⽤于接收原来的超时时间struct timespec {time_t tv_sec; /* Seconds */long tv_nsec; /* Nanoseconds */
};struct itimerspec {struct timespec it_interval; /* 第⼀次之后的超时间隔时间 */struct timespec it_value; /* 第⼀次超时时间 */
};
定时器会在每次超时时,⾃动给fd中写⼊8字节的数据,表⽰在上⼀次读取数据到当前读取数据期间超时了多少次。

2.例子

#include <iostream>
#include <cstdio>
#include <string>
#include <ctime>
#include <cstdlib>
#include <unistd.h>
#include <sys/timerfd.h>
#include <sys/select.h>
int main()
{
/*创建⼀个定时器 */
int timerfd = timerfd_create(CLOCK_MONOTONIC, 0);struct itimerspec itm;itm.it_value.tv_sec = 3;//设置第⼀次超时的时间itm.it_value.tv_nsec = 0;itm.it_interval.tv_sec = 3;//第⼀次超时后,每隔多⻓时间超时itm.it_interval.tv_nsec = 0;timerfd_settime(timerfd, 0, &itm, NULL);//启动定时器/*这个定时器描述符将每隔三秒都会触发⼀次可读事件*/time_t start = time(NULL);while(1) {uint64_t tmp;/*需要注意的是定时器超时后,则描述符触发可读事件,必须读取8字节的数据,保存的是⾃上*/int ret = read(timerfd, &tmp, sizeof(tmp));if (ret < 0) {return -1;}std::cout << tmp << " " << time(NULL) - start << std::endl;}close(timerfd);return 0;}

二、时间轮

(一)思想

上述的例子,存在⼀个很大的问题,每次超时都要将所有的连接遍历一遍,如果有上万个连接,效率无疑是较为低下的。
这时候大家就会想到,我们可以针对所有的连接,根据每个连接最近⼀次通信的系统时间建立⼀个小根堆,这样只需要每次针对堆顶部分的连接逐个释放,直到没有超时的连接为止,这样也可以大大提高处理的效率。
上述方法可以实现定时任务,但是这里给大家介绍另⼀种方案:时间轮
时间轮的思想来源于钟表,如果我们定了⼀个3点钟的闹铃,则当时针走到3的时候,就代表时间到了。

同样的道理,如果我们定义了一个数组,并且有一个指针,指向数组起始位置,这个指针每秒钟向后走动一步,走到哪里,则代表哪里的任务该被执行了,那么如果我们想要定一个3s后的任务,则只需要将任务添加到tick+3位置,则每秒中走一步,三秒钟后tick走到对应位置,这时候执行对应位置的任务即可。
但是,同一时间可能会有大批量的定时任务,因此我们可以给数组对应位置下拉一个数组,这样就可以在同一个时刻上添加多个定时任务了。
在这里插入图片描述

(一)代码

#include <iostream>
#include <list>
#include <vector>
#include <unordered_set>
#include <memory>
#include <cassert>
#include <unistd.h>
#include <functional>/*定时任务类*/
using TaskFunc = std::function<void()>;
// 它是一个使用 std::function 模板类实现的函数指针。
//这里的函数指针是指可以指向任意函数的指针类型,其参数类型为 void(),表示该函数不接受任何参数,返回类型为 void。
using ReleaseFunc = std::function<void()>; class TimeTask {private:uint64_t _id;  // 定时器任务对象uint64_t _timeout; // 定时任务的超时时间bool _canceled;     // false-表示没有被取消, true-表示被取消TaskFunc _task_cb;  // 定时器对象要执行的定时任务ReleaseFunc _release; //用于删除TimerWheel中保存的定时器对象信息public:// 1.构造函数TimeTask(uint64_t id,uint32_t delay,const TaskFunc &cb) : _id(id),_timeout(delay),_task_cb(cb) {}// 2.析构函数~TimerTask() { if (_canceled == false) _task_cb(); _release(); }void Cancel() { _canceled = true; }void SetRelease(const ReleaseFunc &cb) { _release = cb; }uint32_t DelayTime() { return _timeout; }
};class TimeWheel {private:using WeakTask = std::weak_ptr<TimeTask>; // std::weak_ptr 是 C++11 标准库中引入的一种智能指针,// 它提供了对指针所指向对象的弱引用。当弱引用超出作用域或者对象被销毁时,// 智能指针会自动设置为 nullptr,从而避免了悬空指针(dangling pointer)的问题。using PtrTask = std::share_ptr<TimeTask>;std::vector<std::vector<PtrTask>> _wheel;int _tick; // 当前的秒针int _capacity; // 表盘最大数量 ——其实就是最大延迟时间std::unordered_map<uint64_t,WeakTask> _timers;private:void RomoveTimer(uint64_t id) {auto it = _timers.find(id);if (it != _timers.find(id)) {_timers.arase(it);}}public:Wheel() _capacity(60),_tick(0),_wheel(_capacity) {}}
#include <iostream>
#include <vector>
#include <unordered_map>
#include <cstdint>
#include <functional>
#include <memory>
#include <unistd.h>using TaskFunc = std::function<void()>;
using ReleaseFunc = std::function<void()>;
class TimerTask{private:uint64_t _id;       // 定时器任务对象IDuint32_t _timeout;  //定时任务的超时时间bool _canceled;     // false-表示没有被取消, true-表示被取消TaskFunc _task_cb;  //定时器对象要执行的定时任务ReleaseFunc _release; //用于删除TimerWheel中保存的定时器对象信息public:TimerTask(uint64_t id, uint32_t delay, const TaskFunc &cb): _id(id), _timeout(delay), _task_cb(cb), _canceled(false) {}~TimerTask() { if (_canceled == false) _task_cb(); _release(); }void Cancel() { _canceled = true; }void SetRelease(const ReleaseFunc &cb) { _release = cb; }uint32_t DelayTime() { return _timeout; }
};class TimerWheel {private:using WeakTask = std::weak_ptr<TimerTask>;using PtrTask = std::shared_ptr<TimerTask>;int _tick;      //当前的秒针,走到哪里释放哪里,释放哪里,就相当于执行哪里的任务int _capacity;  //表盘最大数量---其实就是最大延迟时间std::vector<std::vector<PtrTask>> _wheel;std::unordered_map<uint64_t, WeakTask> _timers;private:void RemoveTimer(uint64_t id) {auto it = _timers.find(id);if (it != _timers.end()) {_timers.erase(it);}}public:TimerWheel():_capacity(60), _tick(0), _wheel(_capacity) {}void TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb) {PtrTask pt(new TimerTask(id, delay, cb));pt->SetRelease(std::bind(&TimerWheel::RemoveTimer, this, id));int pos = (_tick + delay) % _capacity;_wheel[pos].push_back(pt);_timers[id] = WeakTask(pt);}//刷新/延迟定时任务void TimerRefresh(uint64_t id) {//通过保存的定时器对象的weak_ptr构造一个shared_ptr出来,添加到轮子中auto it = _timers.find(id);if (it == _timers.end()) {return;//没找着定时任务,没法刷新,没法延迟}PtrTask pt = it->second.lock();//lock获取weak_ptr管理的对象对应的shared_ptrint delay = pt->DelayTime();int pos = (_tick + delay) % _capacity;_wheel[pos].push_back(pt);}void TimerCancel(uint64_t id) {auto it = _timers.find(id);if (it == _timers.end()) {return;//没找着定时任务,没法刷新,没法延迟}PtrTask pt = it->second.lock();if (pt) pt->Cancel();}//这个函数应该每秒钟被执行一次,相当于秒针向后走了一步void RunTimerTask() {_tick = (_tick + 1) % _capacity;_wheel[_tick].clear();//清空指定位置的数组,就会把数组中保存的所有管理定时器对象的shared_ptr释放掉}
};class Test {public:Test() {std::cout << "构造" << std::endl;}~Test() {std::cout << "析构" << std::endl;}
};void DelTest(Test *t) {delete t;
}int main()
{TimerWheel tw;Test *t = new Test();tw.TimerAdd(888, 5, std::bind(DelTest, t));for(int i = 0; i < 5; i++) {sleep(1);tw.TimerRefresh(888);//刷新定时任务tw.RunTimerTask();//向后移动秒针std::cout << "刷新了一下定时任务,重新需要5s中后才会销毁\n";}tw.TimerCancel(888);while(1) {sleep(1);std::cout << "-------------------\n";tw.RunTimerTask();//向后移动秒针}return 0;
}

一个时间轮写的我都要痛苦死了。。。
呜呜呜呜谁能救救我。。。。。。。。

相关文章:

二、C++项目:仿muduo库实现并发服务器之时间轮的设计

文章目录 一、为什么要设计时间轮&#xff1f;&#xff08;一&#xff09;简单的秒级定时任务实现&#xff1a;&#xff08;二&#xff09;Linux提供给我们的定时器&#xff1a;1.原型2.例子 二、时间轮&#xff08;一&#xff09;思想&#xff08;一&#xff09;代码 一、为什…...

计算机竞赛 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习OCR中文识别系统 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;…...

蓝桥等考Python组别五级003

第一部分:选择题 1、Python L5 (15分) 表达式“a >= b”等价于下面哪个表达式?( ) a > b and a == ba > b or a == ba < b and a == ba < b or a > b正确答案:B 2、Python L5 (15分) 当x是偶数时,下面哪个表达式的值一定是True?( …...

学之思项目第一天-完成项目搭建

一、前端 拉下前端代码执行 npm i 然后执行npm run serve就行了 二、后端 搭建父子模块 因为这个涉及到前台以及后台管理所以使用父子模块 并且放置一个公共模块&#xff0c;放置公共的依赖以及公共的代码 2.1 搭建父子工程 这个可以使用直接一个个的maven模块&#xff…...

pandas--->CSV / JSON

csv CSV&#xff08;Comma-Separated Values&#xff0c;逗号分隔值&#xff0c;有时也称为字符分隔值&#xff0c;因为分隔字符也可以不是逗号&#xff09;&#xff0c;其文件以纯文本形式存储表格数据&#xff08;数字和文本&#xff09;。 CSV 是一种通用的、相对简单的文…...

LeetCode算法二叉树—116. 填充每个节点的下一个右侧节点指针

目录 116. 填充每个节点的下一个右侧节点指针 题解&#xff1a; 代码&#xff1a; 运行结果&#xff1a; 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树定义如下&#xff1a; struct Node {int val;Node *left;N…...

二、2023.9.28.C++基础endC++内存end.2

文章目录 17、说说new和malloc的区别&#xff0c;各自底层实现原理。18、 说说const和define的区别。19、 说说C中函数指针和指针函数的区别&#xff1f;20、 说说const int *a, int const *a, const int a, int *const a, const int *const a分别是什么&#xff0c;有什么特点…...

DevSecOps 将会嵌入 DevOps

通常人们在一个项目行将结束时才会考虑到安全&#xff0c;这么做会导致很多问题&#xff1b;将安全融入到DevOps的工作流中已产生了积极结果。 DevSecOps&#xff1a;安全正当时 一直以来&#xff0c;开发人员在构建软件时认为功能需求优先于安全。虽然安全编码实践起着重要作…...

不同管径地下管线的地质雷达响应特征分析

不同管径地下管线的地质雷达响应特征分析 前言 以混凝土管线为例&#xff0c;建立了不同管径的城市地下管线模型&#xff0c;进行二维地质雷达正演模拟&#xff0c;分析不同管径管线的地质雷达响应特征。 文章目录 不同管径地下管线的地质雷达响应特征分析前言1、管径50cm2、…...

【接口测试学习】白盒测试 接口测试 自动化测试

一、什么是白盒测试 白盒测试是一种测试策略&#xff0c;这种策略允许我们检查程序的内部结构&#xff0c;对程序的逻辑结构进行检查&#xff0c;从中获取测试数据。白盒测试的对象基本是源程序&#xff0c;所以它又称为结构测试或逻辑驱动测试&#xff0c;白盒测试方法一般分为…...

7.网络原理之TCP_IP(下)

文章目录 4.传输层重点协议4.1TCP协议4.1.1TCP协议段格式4.1.2TCP原理4.1.2.1确认应答机制 ACK&#xff08;安全机制&#xff09;4.1.2.2超时重传机制&#xff08;安全机制&#xff09;4.1.2.3连接管理机制&#xff08;安全机制&#xff09;4.1.2.4滑动窗口&#xff08;效率机制…...

Docker Dockerfile解析

Dockerfile是什么 Dockerfile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本。 官网&#xff1a;Dockerfile reference | Docker Docs 构建三步骤&#xff1a; 编写Dockerfile文件docker build命令构建镜像docker run依镜像运行容…...

浏览器从输入URL到页面展示这个过程中都经历了什么

一. URL输入 URL是统一资源定位符&#xff0c;用于定位互联网上的资源&#xff0c;俗称网址。我们在地址栏输入网址后敲下回车&#xff0c;浏览器会对输入的信息进行以下判断&#xff1a; 1. 检查输入的内容是否是一个合法的URL连接 2. 如果合法的话&#xff0c;则会判断URL…...

2023-09-22 monetdb-事务管理-乐观并发控制-记录

摘要: 2023-09-22 monetdb-事务管理-记录 相关文档: Transaction Management | MonetDB Docs https://en.wikipedia.org/wiki/Optimistic_concurrency_control monetdb事务管理: MonetDB/SQL 支持以 START TRANSACTION 标记并以 COMMIT 或 ROLLBACK 关闭的多语句事务方案。如果…...

蓝桥等考Python组别四级008

第一部分:选择题 1、Python L4 (15分) 字符“D”的ASCII码值比字符“F”的ASCII码值小( )。 1234正确答案:B 2、Python L4 (15分) 下面的Python变量名正…...

SpringMVC 学习(二)Hello SpringMVC

3. Hello SpringMVC (1) 新建 maven 模块 springmvc-02-hellomvc (2) 确认依赖的导入 (3) 配置 web.xml <!--web/WEB-INF/web.xml--> <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xmlns.jcp.org/xml/ns/javaee…...

交换机之间配置手动|静态链路聚合

两台交换机&#xff0c;配置链路聚合&#xff1a; 1、禁止自动协商速率&#xff0c;配置固定速率 int G0/0/1 undo negotiation auto speed 100int G0/0/2 undo negotiation auto speed 100 2、配置eth-trunk int eth-trunk 1 mode manual | lacp-staticint G0/0/1 eth-trun…...

Shiro高级及SaaS-HRM的认证授权

Shiro在SpringBoot工程的应用 Apache Shiro是一个功能强大、灵活的&#xff0c;开源的安全框架。它可以干净利落地处理身份验证、授权、企业会话管理和加密。越来越多的企业使用Shiro作为项目的安全框架&#xff0c;保证项目的平稳运行。 在之前的讲解中只是单独的使用shiro&…...

eclipse svn插件安装

1.进入eclipse的help->Eclipse Marketplace,如下图所示&#xff1a; 2.输入“svn”,再按回车&#xff0c;如下图&#xff1a; 3.这我选择的是 Subversive,点击后面的“install”按钮&#xff0c;如下图 Eclipse 下连接 SVN 库有两种插件 —— Subclipse 与 Subversive &…...

C语言 cortex-A7核 UART总线 实验

一、C 1&#xff09;uart4.h #ifndef __UART4_H__ #define __UART4_H__ #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h&quo…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

云原生时代的系统设计:架构转型的战略支点

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、云原生的崛起&#xff1a;技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深&#xff0c;传统的 I…...