什么是大数据可视化
在互联网高速发展的当今,5G的兴起加速了数据传输的速度;与此同时,智能物联网如智慧家电、可穿戴设备等产品的火热,进一步扩充了数据获取的渠道。不仅仅在网页上、手机和电脑应用上以秒计产生海量数据,智能设备同时也在捕捉着大量的信息。
可以说,大数据在体量和传输效率上都进入了新的发展阶段。作为企业和品牌以及社会的宝贵财富,大数据的价值不言而喻。而数据可视化,又在极大程度上方便了大数据价值的视觉呈现。今天,径妹儿我就与大家一起探讨一下关于大数据可视化的相关概念以及一些案例。
一、什么是大数据可视化
这是一个复合概念,包含大数据+数据可视化两个方面。大数据指的是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有高度多样性(即数据种类、来源、形式的多样化)、大体量和高速性(数据增速快且具有时效性,需要高规格的处理和响应速度)这三个特点。
作为极具研究价值的大数据资源,要想让品牌决策者能够快、准、狠地汲取其精华,还需要数据可视化进行加工和精准化,从而为决策提供良好的数据背书,提高决策效率和准确性。数据可视化是以图形图表的形式将原始的信息和数据表示出来。
通过使用图表,图形和地图等可视元素,数据可视化可以提供一种便于观察和理解数据内在的异常值、趋势、规律甚至是模式的手法。因此总的来说,大数据可视化就是通过对大数据进行获取、清洗、分析,将所示分析结果通过图形、图标等形式展示出来的一个过程。
二、大数据可视化的价值
相比于千篇一律的数字表格,人类的目光和注意力更容易被颜色和图案吸引:比如从蓝色中快速识别红色,从圆形中快速识别出方形。
因此,大数据可视化可以帮助我们更加科学地从视觉角度对海量数据进行诠释,进而引发观看者的兴趣,并通过不同的表现形式和突出手段将观看者的注意力集中在某一点上,同时令其获取更加有价值的、容易内化和理解的信息。
三、大数据可视化案例
大数据可视化主要需要两大步骤:数据分析和分析结果的可视化转化。初级的数据可视化效果可能是简单的一个树状图、辐射图、直方图、扇形图等等,做到用数据说话;
然而,我们更希望看到的是能够有张有弛,有轻有重的可视化结果,从而让观看者能够一眼抓到想要的数据维度以及关键值,这就需要通过选择恰当的表现手法实现真正的让数据说话。
接下来,将为大家举两个简单的例子帮助大家理解“用数据说话”和“让数据说话”两个维度的数据可视化效果。
例一:用数据说话 vs. 让数据说话
图1:大数据可视化——用数据说话例1
图2:大数据可视化——让数据说话例1
这是一个简单的例子,表示的是同一组学生在参与某项目前后对科学的看法。通过将收集的调查数据进行基本的清洗和分析,便可得出项目实行前后学生对科学的不同看法所占百分比。
如图1,简单的方法就是将这两个不同时间节点的数据做成两个饼状图:这一步其实只是将数据分析的结果进行了一个最基本的展示,而两个饼状图一定程度上割裂了参与项目前后的数据的联系,所以当向观众展示的时候,还需要观众对数据进行一个思考和加工才能够得出进一步的结论。
而图2则是将项目实行前后的数据整合在一起,可以清楚地让人观察出学生对科学的看法的在两个时间阶段的对比效果。与此同时,适当的文字说明不仅仅能够对图形效果有一个辅助作用,有时甚至能一阵见血地道出数据中的关键趋势、异常值、规律等,让观众一眼就能够get到可视化数据中的重点,实现真正的“让数据说话”。
例2:
图3:大数据可视化——用数据说话例2
图4:大数据可视化——让数据说话例2
这是一个电影院全年售票数量统计的例子。我们可以看出,收集的数据经过简单的清洗,就能够做出图3中的直方图,实际上,一数据可视化的过程,甚至都没有深入地进行数据分析,就将售票结果展示出来了;
尽管针对不同月份中两种票况有一个颜色分类和对比,但是仍旧需要观众对该图表进行一个主观的分析和判断,实际上还是用数据说话。而更加精妙的大数据可视化,是根据数据的价值所在以及分析的目的来有的放矢地对数据进行一个关联和展示:
如图4所示,同样的例子将直方图修改为折线图,换一个形式,则能够迅速将一年12个月的售票数量趋势显示出来,让观众很容易捕捉到数据的规律;
与此同时,在数据分析过程中将售票数量与员工人数进行一个关联,在趋势变化的异常值处加入员工离职数据,可以让整个可视化图表为观众解释,这一趋势出现的影响因素,也就做到了让数据说话,进一步挖掘和展示出了数据的价值。
相关文章:

什么是大数据可视化
在互联网高速发展的当今,5G的兴起加速了数据传输的速度;与此同时,智能物联网如智慧家电、可穿戴设备等产品的火热,进一步扩充了数据获取的渠道。不仅仅在网页上、手机和电脑应用上以秒计产生海量数据,智能设备同时也在…...

python监控ES索引数量变化
文章目录 1, datafram根据相同的key聚合2, 数据合并:获取采集10,20,30分钟es索引数据脚本测试验证 1, datafram根据相同的key聚合 # 创建df1 > json {key:A, value:1 } {key:B, value:2 } data1 {key: [A, B], value: [1, 2]} df1 pd.DataFrame(data1)# 创建d…...

MySQL explain SQL分析工具详解与最佳实践
目录 一、explain工具介绍二、添加示例表和数据用于后续演示三、explain中的列3.1、id列3.2、select_type列3.3、table列3.4、partitions列3.5、type列NULLsystemconsteq_refrefrangeindexALL 3.6、possible_keys列3.7、key列3.8、key_len列3.9、ref列3.10、rows列3.11、filter…...
【2023年11月第四版教材】第16章《采购管理》(第一部分)
第16章《采购管理》(第一部分) 1 章节内容2 管理基础3 管理过程4 采购管理ITTO汇总 1 章节内容 【本章分值预测】大部分内容不变,细节有一些变化,预计选择题考3-4分,案例和论文 都有可能考;是需要重点学习…...

矢量图形编辑软件illustrator 2023 mac软件特点
illustrator 2023 mac是一款矢量图形编辑软件,用于创建和编辑排版、图标、标志、插图和其他类型的矢量图形。 illustrator mac软件特点 矢量图形:illustrator创建的图形是矢量图形,可以无限放大而不失真,这与像素图形编辑软件&am…...
前端架构师之01_JavaScript_Ajax
1 Web基础知识 1.1 Web服务器 Web服务器又称为网站服务器,主要用于提供网上信息浏览服务。常见的Web服务器软件有Apache HTTP Server(简称Apache)、Nginx等。 浏览器与服务器交互 在Web服务器中,请求资源又分为静态资源和动态…...
Java Spring Boot 目录结构介绍
Java Spring Boot 是一个用于简化Java应用程序开发的框架,它提供了一套灵活、易用的开发工具和约定,帮助开发者更快速地构建各种类型的Java应用程序。Spring Boot 的目录结构是一个重要的组成部分,它规定了如何组织和管理项目代码和资源文件。…...

ubuntu apt工具软件操作
apt工具 -----> 网关 国内网络(仓库源) 美国网络(仓库源)/etc/apt/sources.list https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/sudo apt-get update sudo apt install sl 安装包 sudo apt-cache show sl 查看包信…...

【论文阅读】UniDiffuser: Transformer+Diffusion 用于图、文互相推理
而多模态大模型将能够打通各种模态能力,实现任意模态之间转化,被认为是通用式生成模型的未来发展方向。 最近看到不少多模态大模型的工作,有医学、金融混合,还有CV&NLP。 今天介绍: One Transformer Fits All Di…...

Python爬虫教程——解析网页中的元素
前言: 嗨喽~大家好呀,这里是小曼呐 ~ 在我们理解了网页中标签是如何嵌套,以及网页的构成之后, 我们就是可以开始学习使用python中的第三方库BeautifulSoup筛选出一个网页中我们想要得到的数据。 接下来我们了解一下爬取网页信息…...

BiMPM实战文本匹配【上】
引言 今天来实现BiMPM模型进行文本匹配,数据集采用的是中文文本匹配数据集。内容较长,分为上下两部分。 数据准备 数据准备这里和之前的模型有些区别,主要是因为它同时有字符词表和单词词表。 from collections import defaultdict from …...

【C++】构造函数和析构函数第二部分(拷贝构造函数)--- 2023.9.28
目录 什么是拷贝构造函数?编译器默认的拷贝构造函数构造函数的分类及调用结束语 什么是拷贝构造函数? 用一句话来描述为拷贝构造即 “用一个已知的对象去初始化另一个对象” 具体怎么使用我们直接看代码,代码如下: class Maker…...
现在学RPA,还有前途吗,会不会太卷?
RPA是机器人流程自动化的缩写,是一种通过软件机器人模拟人类操作计算机的技术。随着人工智能和自动化技术的不断发展,RPA已经成为了企业数字化转型的重要工具之一。那么,现在学习RPA还有前途吗?会不会太卷? 一、RPA的…...

Vue的详细教程--用Vue-cli搭建SPA项目
Vue的详细教程--用Vue-cli搭建SPA项目 1.Vue-cli是什么2.什么是SPA项目1.vue init webpack spa2.一问一答模式2:运行完上面的命令后,我们需要将当前路径改变到SPA这个文件夹内,然后安装需要的模块此步骤可理解成:maven的web项目创…...
openldap访问控制
系统:debian12 /etc/ldap/slapd.d/cnconfig目录下 包含以下三个数据库: dn: olcDatabase{-1}frontend,cnconfig dn: olcDatabase{0}config,cnconfig dn: olcDatabase{1}mdb,cnconfigolcDatabase: [{\<index\>}]\<type\>数据库条目必须具有…...

阿里云服务器技术创新、网络技术和数据中心技术说明
阿里云服务器技术创新、网络技术创新、数据中心技术创新和智能运维:云服务器方升架构、自研硬件、自研存储硬件AliFlash和异构计算加速平台,以及全自研网络系统技术创新和数据中心巴拿马电源、液冷技术等技术创新说明,阿里云百科分享阿里云服…...

华为智能高校出口安全解决方案(2)
本文承接: https://qiuhualin.blog.csdn.net/article/details/131475315?spm1001.2014.3001.5502 重点讲解华为智能高校出口安全解决方案的基础网络安全&业务部署与优化的部署流程。 华为智能高校出口安全解决方案(2) 课程地址基础网络…...

【AI绘画】Stable Diffusion WebUI
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...

html、css学习记录【uniapp前奏】
Html 声明:该学习笔记源于菜鸟自学网站,特此记录笔记。很多示例源于此官网,若有侵权请联系删除。 文章目录 Html声明: CSS 全称 Cascading Style Sheets,层叠样式表。是一种用来为结构化文档(如 HTML 文档…...

Linux-正则三剑客
目录 一、正则简介 1.正则表达式分两类: 2.正则表达式的意义 二、Linux三剑客简介 1.文本处理工具,均支持正则表达式引擎 2.正则表达式分类 3.基本正则表达式BRE集合 4.扩展正则表达式ere集合 三、grep 1.简介 2.实践 3.贪婪匹配 四、sed …...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...