当前位置: 首页 > news >正文

在cesuim上展示二维模型

前提问题:在cesuim上展示二维模型

解决过程:

1.获取或定义所需变量

2.通过window.cesium.viewer.imageryLayers.addImageryProvider和new Cesium.UrlTemplateImageryProvider进行建模

3.传入url路径后拼接+{z}/{x}/{y}.png

4.聚焦到此模型window.cesium.viewer.camera.flyTo

//此值根据实际情况进行获取或定义
let metaContent = ...
let twoModelInfo ={url: url,areas: [{west: metaContent.west,south: metaContent.south,east: metaContent.east,north: metaContent.north,// 瓦片等级minimumLevel: 10,maximumLevel: 23}]
}
create2DModel(twoModelInfo,isFocus)//创建二维正射影像
export const create2DModel= (twoModelInfo,isFocus) => {if (twoModelInfo && twoModelInfo?.areas?.length > 0 ) {let tilesUrl = twoModelInfo.urltwoModelInfo.areas.forEach(item => {window.cesium.viewer.imageryLayers.addImageryProvider(new Cesium.UrlTemplateImageryProvider({url: tilesUrl  + "{z}/{x}/{y}.png",minimumLevel: item.minimumLevel,maximumLevel: item.maximumLevel,rectangle: new Cesium.Rectangle.fromDegrees(item.west, item.south, item.east, item.north)}))//判断是否需要在建模后聚焦到此模型if(isFocus){window.cesium.viewer.camera.flyTo({destination : new Cesium.Rectangle.fromDegrees(item.west, item.south, item.east, item.north)});}})}
}

相关文章:

在cesuim上展示二维模型

前提问题:在cesuim上展示二维模型 解决过程: 1.获取或定义所需变量 2.通过window.cesium.viewer.imageryLayers.addImageryProvider和new Cesium.UrlTemplateImageryProvider进行建模 3.传入url路径后拼接{z}/{x}/{y}.png 4.聚焦到此模型window.ces…...

c/c++中如何输入pi

标准的 C/C 语言中没有π这个符号及常量,一般在开发过程中是通过开发人员自己定义这个常量的,最常见的方式是使用宏定义: 方法1:#define pi 3.1415926 方法2:使用反三角函数const double pi acos(-1.0);...

python爬虫:JavaScript 混淆、逆向技术

Python爬虫在面对JavaScript混淆和逆向技术时可能会遇到一些挑战,因为JavaScript混淆技术和逆向技术可以有效地阻止爬虫对网站内容的正常抓取。以下是一些应对这些挑战的方法: 分析网页源代码:首先,尝试分析网页的源代码&#xf…...

Vue error:0308010C:digital envelope routines::unsupported

vue项目,npm run dev的时候出现:Error: error:0308010C:digital envelope routines::unsupported vue项目,npm run dev的时候出现:Error: error:0308010C:digital envelope routines::unsupported 这个是node的版本问题。我的nod…...

gitee 远程仓库操作基础(一)

git remote add <远程仓库名> <仓库远程地址> :给远程仓库取个别名,简化一大堆字符串操作 git remote add origin xxx.git :取个Origin名字 git remote -v :查看本地存在的远程仓库 git pull <远程仓库名><远程分支名>:<本地分支名> 相同可取消…...

DRM全解析 —— ADD_FB2(0)

本文参考以下博文&#xff1a; DRM驱动&#xff08;四&#xff09;之ADD_FB 特此致谢&#xff01; 在笔者之前的libdrm全解析系列文章中&#xff0c;讲到了drmIoctl(fd, DRM_IOCTL_MODE_ADDFB, &f)以及其封装函数drmModeAddFB。对应的文章链接为&#xff1a; libdrm全解…...

01Redis的安装和开机自启的配置

安装Redis 单机安装Redis 大多数企业都是基于Linux服务器来部署项目&#xff0c;而且Redis官方也没有提供Windows版本的安装包(此处选择的Linux版本的CentOS 7) Windows版直接下载对应版本的.zip压缩包解压即可使用 第一步: Redis是基于C语言编写的&#xff0c;因此首先需要…...

进入IT行业:选择前端开发还是后端开发?

一、前言 开发做前端好还是后端好&#xff1f;这是一个常见的问题&#xff0c;特别是对于初学者来说。在编程世界中&#xff0c;前端开发和后端开发分别代表着用户界面和数据逻辑&#xff0c;就像城市的两个不同街区一样。但是&#xff0c;究竟哪个街区更适合我们作为开发者呢…...

Java集成Onlyoffice以及安装和使用示例,轻松实现word、ppt、excel在线编辑功能协同操作,Docker安装Onlyoffice

安装Onlyoffice 拉取onlyoffice镜像 docker pull onlyoffice/documentserver 查看镜像是否下载完成 docker images 启动onlyoffice 以下是将本机的9001端口映射到docker的80端口上&#xff0c;访问时通过服务器ip&#xff1a;9001访问&#xff0c;并且用 -v 将本机机/data/a…...

编程面试_动态规划

题目1 最大连续乘积子串 题目描述给一个浮点数序列&#xff0c;取最大乘积连续子串的值&#xff0c;例如 -2.5&#xff0c;4&#xff0c;0&#xff0c;3&#xff0c;0.5&#xff0c;8&#xff0c;-1&#xff0c;则取出的最大乘积连续子串为3&#xff0c;0.5&#xff0c;8。也就…...

ip地址可以精确定位吗

在互联网时代&#xff0c;IP地址的重要性不言而喻。作为网络通信的基础&#xff0c;IP地址用于标识每一台连接到互联网的设备。然而&#xff0c;传统的IP地址定位方式仅能粗略地确定设备的大致位置&#xff0c;无法实现精确定位。那么&#xff0c;IP地址能否实现精确定位呢&…...

Xamarin体验:使用C#开发iOS/Android应用

http://www.cnblogs.com/lwme/p/use-xamarin-develop-Android-iOS-app.html Xamarin是Mono创始人Miguel de Icaza创建的公司,旨在让开发者可以用C#编写iOS, Android, Mac应用程序,也就是跨平台移动开发。 简介 Xamarin是基于Mono的平台,目前主要有以下产品(更具体请见:h…...

聊聊druid连接池的监控

序 本文主要研究一下druid连接池的监控 init com/alibaba/druid/pool/DruidDataSource.java public void init() throws SQLException {//......registerMbean();//...... }DruidDataSource的init方法会执行registerMbean registerMbean com/alibaba/druid/pool/DruidData…...

CentOS 7 安装 Docker 的详细步骤

文章目录 Docker简介1.更新2.安装必要的软件包3.添加Docker仓库4.安装5.安装后的一些常规设置及常用的命令5.1 启动 Docker5.2 Docker 在系统启动时自动运行5.3 运行一个 Hello World 镜像5.4 查看docker运行状态5.5 docker ps5.6 查看docker版本 6.安装种常见的错误错误1:yum-…...

竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…...

数据结构之【泛型】

泛型&#xff1a;定义阶段不明确具体类型&#xff0c;产生对象时明确具体类型。 //Object是Java中的最高参数统一化&#xff0c;能够接受所有的引用类型&#xff1b; //有了包装类的自动拆装箱之后&#xff0c;Object还能够接收基本类型数值&#xff08;自动装箱&#xff09; …...

华为ac无线侧命令行配置思路和步骤

无线侧配置思路&#xff1a; Ap和ac在同一个广播域内&#xff0c;不用配置 option 43 source 源ip回包哪个模式都得配置 Cli配置业务模版流程&#xff1a; 1、 AC控制器上全局配置capwap回包接口地址 1、配置ssid&#xff1a;wifi名称 2、配置安全模版&#xff1a;用户连接密码…...

十六)Stable Diffusion教程:出图流程化

今天说一个流程化出图的案例&#xff0c;适用很多方面。 1、得到线稿&#xff0c;自己画或者图生图加线稿lora出线稿&#xff1b;如果想sd出图调整参数不那么频繁细致&#xff0c;则线稿的素描关系、层次、精深要表现出来&#xff0c;表现清楚。 2、文生图&#xff0c;seed随机…...

SpringBoot全局异常处理源码

SpringBoot全局异常处理源码 一、SpringMVC执行流程二、SpringBoot源码跟踪三、自定义优雅的全局异常处理脚手架starter自定义异常国际化引入封装基础异常封装基础异常扫描器&#xff0c;并注册到ExceptionHandler中项目分享以及改进点 一、SpringMVC执行流程 今天这里叙述的全…...

设计模式——7. 装饰者模式

1. 说明 装饰者模式(Decorator Pattern)是一种结构型设计模式,它允许你在不改变对象接口的前提下,动态地将新行为附加到对象上。这种模式是通过创建一个包装(或装饰)对象,将要被装饰的对象包裹起来,从而实现对原有对象功能的增强和扩展。 装饰者模式的主要特点包括:…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

python打卡day49@浙大疏锦行

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 一、通道注意力模块复习 & CBAM实现 import torch import torch.nn as nnclass CBAM(nn.Module):def __init__…...