幂级数和幂级数的和函数有什么关系?
幂级数和幂级数的和函数有什么关系?
本文例子引用自:80_1幂级数运算,逐项积分、求导【小元老师】高等数学,考研数学
求幂级数 ∑ n = 1 ∞ 1 n x n \sum\limits_{n=1}^{\infty}\frac{1}{n}x^n n=1∑∞n1xn 的和函数
(1)求收敛半径,由于是不缺项级数所以可以使用 lim n → ∞ ∣ a n + 1 a n ∣ = ρ \lim\limits_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|=\rho n→∞lim∣anan+1∣=ρ,若是缺项级数则只能使用 lim n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ = ρ ∣ ϕ ( x ) ∣ < 1 \lim\limits_{n\rightarrow\infty}|\frac{u_{n+1}(x)}{u_n(x)}|=\rho|\phi(x)|\lt 1 n→∞lim∣un(x)un+1(x)∣=ρ∣ϕ(x)∣<1,当然不缺项级数也可使用后者。
ρ = lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ 1 n + 1 1 n ∣ = 1 \rho=\lim\limits_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|=\lim\limits_{n\rightarrow\infty}|\frac{\frac{1}{n+1}}{\frac{1}{n}}|=1 ρ=n→∞lim∣anan+1∣=n→∞lim∣n1n+11∣=1
(2)判断端点处的敛散性
当 x = − 1 x=-1 x=−1 时, ∑ n = 1 ∞ ( − 1 ) n 1 n \sum\limits_{n=1}^{\infty}(-1)^n\frac{1}{n} n=1∑∞(−1)nn1, u n = 1 n → 0 u_n=\frac{1}{n}\rightarrow0 un=n1→0 且 u n = 1 n u_n=\frac{1}{n} un=n1递减,级数收敛(利用交错级数的莱布尼茨定理判别)
当 x = 1 x=1 x=1 时, ∑ n = 1 ∞ 1 n \sum\limits_{n=1}^{\infty}\frac{1}{n} n=1∑∞n1, p = 1 p=1 p=1,级数发散(利用p级数判别)
(3)综上,该级数收敛域 [ − 1 , 1 ) [-1,1) [−1,1)
(4)求收敛域中幂级数的和函数(在收敛域中幂级数等于其和函数,超过收敛域二者不等)
s ( x ) = ∑ n = 1 ∞ 1 n x n = x + 1 2 x 2 + 1 3 x 3 + ⋯ + 1 n x n + ⋯ s(x)=\sum\limits_{n=1}^{\infty}\frac{1}{n}x^n=x+\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+\frac{1}{n}x^n+\cdots s(x)=n=1∑∞n1xn=x+21x2+31x3+⋯+n1xn+⋯
逐项求导
s ′ ( x ) = ( ∑ n = 1 ∞ 1 n x n ) ′ = 1 + x + x 2 + ⋯ + 1 n x n − 1 + ⋯ = 1 1 − x s'(x)=\big(\sum\limits_{n=1}^{\infty}\frac{1}{n}x^n\big)'=1+x+x^2+\cdots+\frac{1}{n}x^{n-1}+\cdots=\frac{1}{1-x} s′(x)=(n=1∑∞n1xn)′=1+x+x2+⋯+n1xn−1+⋯=1−x1
左右两端同时积分(右侧逐项积分)
s ( x ) = s ( 0 ) + ∫ 0 x s ′ ( t ) d t = 0 + ∫ 0 x 1 1 − t d t = − ln ( 1 − x ) s(x)=s(0)+\int_0^xs'(t)dt=0+\int_0^x\frac{1}{1-t}dt=-\ln(1-x) s(x)=s(0)+∫0xs′(t)dt=0+∫0x1−t1dt=−ln(1−x)
上式为什么还有 s ( 0 ) s(0) s(0)?
∫ 0 x s ′ ( t ) d t = s ( x ) ∣ 0 x = s ( x ) − s ( 0 ) s ( x ) = s ( 0 ) + ∫ 0 x s ′ ( t ) d t \int_0^xs'(t)dt=s(x)|_0^x=s(x)-s(0)\\ ~\\ s(x)=s(0)+\int_0^xs'(t)dt ∫0xs′(t)dt=s(x)∣0x=s(x)−s(0) s(x)=s(0)+∫0xs′(t)dt
最终收敛域上幂级数的和函数为:
s ( x ) = − ln ( 1 − x ) , x ∈ [ − 1 , 1 ) s(x)=-\ln(1-x),x\in[-1,1) s(x)=−ln(1−x),x∈[−1,1)
我们为什么要兜圈子先对级数求导(或积分)然后再进行积分(或求导)呢?
主要想利用等比级数,因为其和函数容易求得,而逐项求导和积分的目的是将所给幂级数变换为等比级数,随后利用等比级数求出所给幂级数的和函数
我们在图像中看看到底幂级数和幂级数的和函数有什么关系?
下图中幂级数的图像为绿色曲线,其实不是真正的图像,因为 n n n为无穷大,笔者这里 n n n只取到了9,仅做示意。下图中红色曲线为幂级数和函数的图像,我们可以发现在收敛域中幂级数等于其和函数,超过收敛域二者是不等的
相关文章:

幂级数和幂级数的和函数有什么关系?
幂级数和幂级数的和函数有什么关系? 本文例子引用自:80_1幂级数运算,逐项积分、求导【小元老师】高等数学,考研数学 求幂级数 ∑ n 1 ∞ 1 n x n \sum\limits_{n1}^{\infty}\frac{1}{n}x^n n1∑∞n1xn 的和函数 ÿ…...

Git多账号管理通过ssh 公钥的方式,git,gitlab,gitee
按照目前国内访问git,如果不科学上网,我们很大可能访问会超时。基于这个,所以我现在的git 配置已经增加到了3个了 一个公司gitlab,一个git,一个gitee. 以下基于这个环境,我们来说明下如何创建配置ssh公钥。…...
在nodejs常见的不良做法及其优化解决方案
在nodejs常见的不良做法及其优化解决方案 当涉及到在express和nodejs中开发应用程序时。遵循最佳实践对于确保项目的健壮性、可维护性和安全性至关重要。 在本文中,我们将探索开发人员经常遇到的几种常见的错误做法,并通过代码示例研究优化的最佳做法&…...
关于layui upload上传组件上传文件无反应的问题
最近使用layui upload组件时,碰到了上传文件无反应的问题,感到非常困惑。 因为使用layui upload组件不是一次两次了,之前每次都可以,这次使用同样的配方,同样的姿势,为什么就不行了呢? 照例先…...

容器网络之Flannel
第一个问题位置变化,往往是通过一个称为注册中心的地方统一管理的,这个是应用自己做的。当一个应用启动的时候,将自己所在环境的 IP 地址和端口,注册到注册中心指挥部,这样其他的应用请求它的时候,到指挥…...
SVM(下):如何进行乳腺癌检测?
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…...

嵌入式Linux应用开发-第十五章具体单板的按键驱动程序
嵌入式Linux应用开发-第十五章具体单板的按键驱动程序 第十五章 具体单板的按键驱动程序(查询方式)15.1 GPIO操作回顾15.2 AM335X的按键驱动程序(查询方式)15.2.1 先看原理图确定引脚及操作方法15.2.2 再看芯片手册确定寄存器及操作方法15.2.3 编程15.2.3.1 程序框架15.2.3.2 硬…...

MySQL体系结构和四层架构介绍
MySQL体系结构图如下: 四层介绍 1. 连接层: 它的主要功能是处理客户端与MySQL服务器之间的连接(比如Java应用程序通过JDBC连接MySQL)。当客户端应用程序连接到MySQL服务器时,连接层对用户进行身份验证、建立安全连接并管理会话状态。它还处理…...

【产品运营】如何做好B端产品规划
产品规划是基于当下掌握的多维度信息,为追求特定目的,而制定的产品资源投入计划。 产品规划是基于当下掌握的多维度信息(客户需求、市场趋势、竞争对手、竞争策略等),为追求特定目的(商业增长、客户满意等&…...
ruoyi-启动
1 springboot 版本 git 地址 ruoyi-vue-pro: 🔥 官方推荐 🔥 RuoYi-Vue 全新 Pro 版本,优化重构所有功能。基于 Spring Boot MyBatis Plus Vue & Element 实现的后台管理系统 微信小程序,支持 RBAC 动态权限、数据权限…...

select完成服务器并发
服务器 #include <myhead.h>#define PORT 4399 //端口号 #define IP "192.168.0.191"//IP地址//键盘输入事件 int keybord_events(fd_set readfds); //客户端交互事件 int cliRcvSnd_events(int , struct sockaddr_in*, fd_set *, int *); //客户端连接事件 …...

初级篇—第四章聚合函数
文章目录 聚合函数介绍聚合函数介绍COUNT函数AVG和SUM函数MIN和MAX函数 GROUP BY语法基本使用使用多个列分组WITH ROLLUP HAVING基本使用WHERE和HAVING的对比开发中的选择 SELECT的执行过程查询的结构SQL 的执行原理 练习流程函数 聚合函数介绍 聚合函数作用于一组数据&#x…...

计算机图像处理-中值滤波
非线性滤波 非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果,常用的非线性滤波方法有中值滤波和高斯双边滤波,分别对应cv2.medianBlur(src, ksize)方法和cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])方法。 …...

Golang中的包和模块设计
Go,也被称为Golang,是一种静态类型、编译型语言,因其简洁性和对并发编程的强大支持而受到开发者们的喜爱。Go编程的一个关键方面是其包和模块系统,它允许创建可重用、可维护和高效的代码。本博客文章将深入探讨在Go中设计包和模块…...

web:[极客大挑战 2019]Upload
题目 页面显示为一个上传,猜测上传一句话木马文件 先查看源代码看一下有没有有用的信息,说明要先上传图片,先尝试上传含有一句话木马的图片 构造payload <?php eval($_POST[123]);?> 上传后页面显示为,不能包含<&…...

ICMP差错包
ICMP报文分类 Type Code 描述 查询/差错 0-Echo响应 0 Echo响应报文 查询 3-目的不可达 0 目标网络不可达报文 差错 1 目标主机不可达报文 差错 2 目标协议不可达报文 差错 3 目标端口不可达报文 差错 4 要求分段并设置DF flag标志报文 差错 5 源路由…...

算法基础课第二部分
算法基础课 第四讲 数学知识AcWing1381. 阶乘(同余,因式分解) 质数AcWing 866. 质数的判定---试除法AcWing 868. 质数的判定---埃氏筛AcWing867. 分解质因数---试除法AcWing 197. 阶乘---分解质因数---埃式筛 约数AcWing 869. 求约数---试除法AcWing 870. 约数个数-…...

【数据结构】外部排序、多路平衡归并与败者树、置换-选择排序(生成初始归并段)、最佳归并树算法
目录 1、外部排序 1.1 基本概念 1.2 方法 2、多路平衡归并与败者树 2.1 K路平衡归并 2.2 败者树 3、置换-选择排序(生成初始归并段)编辑 4、最佳归并树 4.1 理论基础编辑 4.2 构造方法 编辑 5、各种排序算法的性质 1、外部排序 1.1 基本概…...
抽象工厂模式 创建性模式之五
在看这篇文章之前,请先看看“简单工厂模式”和“工厂方法模式”这两篇博文,会更有助于理解。我们现在已经知道,简单工厂模式就是用一个简单工厂去创建多个产品,工厂方法模式是每一个具体的工厂只生产一个具体的产品,然…...
servlet如何获取PUT和DELETE请求的参数
1. servlet为何不能获取PUT和DELETE请求的参数 Servlet的规范是POST的数据需要转给request.getParameter*()方法,没有规定PUT和DELETE请求也这么做 The Servlet spec requires form data to be available for HTTP POST but not for HTTP PUT or PATCH requests. T…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...