pytorch第一天(tensor数据和csv数据的预处理)lm老师版
tensor数据:
import torch
import numpyx = torch.arange(12)
print(x)
print(x.shape)
print(x.numel())X = x.reshape(3, 4)
print(X)zeros = torch.zeros((2, 3, 4))
print(zeros)ones = torch.ones((2,3,4))
print(ones)randon = torch.randn(3,4)
print(randon)a = torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(a)exp = torch.exp(a)
print(exp)X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
print(X)Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(Y)print(torch.cat((X, Y), dim=0))#第一个括号 从外往里数第一个
print(torch.cat((X, Y), dim=1))#第二个括号 从外往里数第二个print(X == Y)#这也是个张量tosum = torch.tensor([1.0,2,3,4])
print(tosum.sum())#加起来也是tensor
print(tosum.sum().item())#这样就是取里面的数 就是一个数了
print(type(tosum.sum().item()))#打印一下类型 是float的类型a1 = torch.arange(3).reshape(3,1)
b1 = torch.arange(2).reshape(1,2)
print(a1+b1)#相加的时候 会自己填充相同的 boardcasting mechanismprint(X[-1])
print(X[1:3])X[1, 2] = 9 #修改(1,2)为9
print(X[1])#打印出那一行X[0:2] = 12 #这样的效果和X[0:2,:]=12是一样的 都是修改前两行为12
print(X)#id相当于地址一样的东西
#直接对Y操作改变了地址 增加了内存
before = id(Y)
Y = Y + X
print(id(Y) == before)
#对其元素修改操作 不增加内存 地址一样
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))#或者用+=连续操作 地址也不会变
before = id(X)
X += Y
print(id(X) == before)A = X.numpy()
print(A)
print("A现在的类型是:{}".format(type(A)))B = torch.tensor(A)
print(B)
print("B现在的类型是:{}".format(type(B)))运行结果自己对照学习了:
F:\python3\python.exe C:\study\project_1\main.py 
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
torch.Size([12])
12
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]],[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]]])
tensor([[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]],[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]]])
tensor([[-0.8680,  1.4825, -0.1070, -1.9015],[-0.7380, -0.3838, -0.2670, -0.2649],[ 0.9945, -1.5293,  0.0398,  0.1669]])
tensor([[2, 1, 4, 3],[1, 2, 3, 4],[4, 3, 2, 1]])
tensor([[ 7.3891,  2.7183, 54.5981, 20.0855],[ 2.7183,  7.3891, 20.0855, 54.5981],[54.5981, 20.0855,  7.3891,  2.7183]])
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]])
tensor([[2., 1., 4., 3.],[1., 2., 3., 4.],[4., 3., 2., 1.]])
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[ 2.,  1.,  4.,  3.],[ 1.,  2.,  3.,  4.],[ 4.,  3.,  2.,  1.]])
tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],[ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],[ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]])
tensor([[False,  True, False,  True],[False, False, False, False],[False, False, False, False]])
tensor(10.)
10.0
<class 'float'>
tensor([[0, 1],[1, 2],[2, 3]])
tensor([ 8.,  9., 10., 11.])
tensor([[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]])
tensor([4., 5., 9., 7.])
tensor([[12., 12., 12., 12.],[12., 12., 12., 12.],[ 8.,  9., 10., 11.]])
False
id(Z): 1801869019800
id(Z): 1801869019800
True
[[26. 25. 28. 27.][25. 26. 27. 28.][20. 21. 22. 23.]]
A现在的类型是:<class 'numpy.ndarray'>
tensor([[26., 25., 28., 27.],[25., 26., 27., 28.],[20., 21., 22., 23.]])
B现在的类型是:<class 'torch.Tensor'>进程已结束,退出代码0
csv一般的数据预处理:
import os
import pandas as pd
import torch#创造文件夹 和excel csv文件
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')#因为没有 所有会自己创建一个#打开文件 用写的方式打开
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')f.write('NA,Pave,127500\n')f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')#打开csv文件
data = pd.read_csv(data_file)
print(data) # 0,1,2,3会从第二行开始 因为第一行一般是标题和标签inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]#裁剪0,1行 第2行舍去给input
print(inputs)
print(outputs)#name就会在下面inputs = inputs.fillna(inputs.mean())#把string的类型变成其他的均值
print(inputs)inputs = pd.get_dummies(inputs, dummy_na=True)#alley里面全是英文 应该把其编码 这就是编码的方式 是1就会为1
print(inputs)#都是数字后 就开始转换成tensor类型了
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
print(X)
print(y)
运行结果:
F:\python3\python.exe C:\study\project_1\data_preprocess.py NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000NumRooms Alley
0       NaN  Pave
1       2.0   NaN
2       4.0   NaN
3       NaN   NaN
0    127500
1    106000
2    178100
3    140000
Name: Price, dtype: int64NumRooms Alley
0       3.0  Pave
1       2.0   NaN
2       4.0   NaN
3       3.0   NaNNumRooms  Alley_Pave  Alley_nan
0       3.0           1          0
1       2.0           0          1
2       4.0           0          1
3       3.0           0          1
tensor([[3., 1., 0.],[2., 0., 1.],[4., 0., 1.],[3., 0., 1.]], dtype=torch.float64)
tensor([127500, 106000, 178100, 140000])进程已结束,退出代码0
第一行代码 创造文件夹的操作和csv操作结果:

他是跑到上一个级创建的dir

ok 结束
相关文章:
 
pytorch第一天(tensor数据和csv数据的预处理)lm老师版
tensor数据: import torch import numpyx torch.arange(12) print(x) print(x.shape) print(x.numel())X x.reshape(3, 4) print(X)zeros torch.zeros((2, 3, 4)) print(zeros)ones torch.ones((2,3,4)) print(ones)randon torch.randn(3,4) print(randon)a …...
 
CSP-J第二轮试题-2021年-1.2题
文章目录 参考:总结 [CSP-J 2021] 分糖果题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 样例 #3样例输入 #3样例输出 #3 提示答案1答案2-优化 [CSP-J 2021] 插入排序题目描述输入格式输出格式样例 #1样例输入 #1样…...
 
怒刷LeetCode的第16天(Java版)
目录 第一题 题目来源 题目内容 解决方法 方法一:迭代 方法二:模拟 方法三:循环模拟 方法四:传递 第二题 题目来源 题目内容 解决方法 方法一:回溯 方法二:枚举优化 第三题 题目来源 题目…...
 
让大脑自由
前言 作者写这本书的目的是什么? 教会我们如何让大脑更好地为自己工作。 1 大脑的运行机制是怎样的? 大脑的基本运行机制是神经元之间通过突触传递信息,神经元的兴奋和抑制状态决定了神经网络的运行和信息处理,神经网络可以通过…...
 
Arcgis克里金插值报错:ERROR 010079: 无法估算半变异函数。 执行(Kriging)失败。
Arcgis克里金插值报错:ERROR 010079: 无法估算半变异函数。 执行(Kriging)失败。 问题描述: 原因: shape文件的问题,此图可以看出,待插值的点有好几个都超出了地理范围之外,这个不知道是坐标系配准的问…...
Docker Compose安装
title: “Docker Compose安装” createTime: 2022-01-04T19:08:1508:00 updateTime: 2022-01-04T19:08:1508:00 draft: false author: “name” tags: [“docker”,“docker-compose”] categories: [“install”] description: “测试的” docker-compose安装步骤 1.下载 u…...
 
机器人过程自动化(RPA)入门 7. 处理用户事件和助手机器人
在UiPath中,有两种类型的Robot用于自动化任何流程。一个是后台机器人,它在后台工作。它独立工作,这意味着它不需要用户的输入或任何用户交互。另一个是前台机器人,也被称为助理机器人。 本章介绍前台机器人。在这里,我们将了解自动化过程中通过简单按键、单击鼠标等触发事…...
 
在linux下预览markdown的方法,转换成html和pdf
背景 markdown是一种便于编写和版本控制的格式,但却不便于预览——特别是包含表格等复杂内容时,单纯的语法高亮是远远不够的——这样就不能边预览边调整内容,需要找到一种预览方法。 思路 linux下有个工具,叫pandoc,…...
 
AIOT入门指南:探索人工智能与物联网的交汇点
AIOT入门指南:探索人工智能与物联网的交汇点 1. 引言 随着技术的快速发展,人工智能(AI)和物联网(IoT)已经成为当今最热门的技术领域。当这两个领域交汇时,我们得到了AIOT - 一个结合了AI的智能…...
 
CCC数字钥匙设计【NFC】 --车主配对流程介绍
1、车主配对流程介绍 车主配对流程可以通过车内NFC进行,若支持UWB测距,也可以通过蓝牙/UWB进行,本文主要介绍通过NFC进行车主配对的流程。 整个配对流程相对较为复杂,本文主要梳理整体的步骤流程,其中的每个细节流程未…...
 
一站式开源持续测试平台 MerterSphere 之测试跟踪操作详解
一、MeterSphere平台介绍 MeterSphere是一站式的开源持续测试平台,遵循 GPL v3 开源许可协议,涵盖测试跟踪、接口测试、UI 测试和性能测试等功能,全面兼容JMeter、Selenium 等主流开源标准,有效助力开发和测试团队充分利用云弹性进…...
自然语言处理状况简介
一、说明 自然语言处理已经进入大模型时代,然而从业人员必须了解整个知识体系、发展过程、知识结构,应用范围等一系列知识。本篇将报道此类概况。 二、自然语言处理简介 自然语言处理,或简称NLP,是处理和转换文本的计算机科学学科…...
 
python爬虫基于管道持久化存储操作
文章目录 基于管道持久化存储操作scrapy的使用步骤1.先转到想创建工程的目录下:cd ...2.创建一个工程3.创建之后要转到工程目录下4.在spiders子目录中创建一个爬虫文件5.执行工程setting文件中的参数 基于管道持久化存储的步骤:持久化存储1:保…...
 
【MySQL】数据类型(二)
文章目录 一. char字符串类型二. varchar字符串类型2.1 char和varchar比较 三. 日期和时间类型四. enum和set类型4.1 set的查询 结束语 一. char字符串类型 char (L) 固定长度字符串 L是可以存储的长度,单位是字符,最大长度是255 MySQL中的字符ÿ…...
基于Matlab实现连续模型求解方法
本文介绍了如何使用Matlab实现连续模型求解方法。首先,我们介绍了连续模型的概念,并明确了使用ODE和PDE求解器来求解常微分方程和偏微分方程的步骤。然后,我们通过一个简单的例子演示了如何将问题转化为数学模型,并使用Matlab编写…...
 
Tomcat 与 JDK 对应版本关系
对应关系 Tomcat版本 jdk版本11.0.x JDK 21及以后10.1.x JDK11及以后10.0.xJDK1.8及以后9.0.x JDK1.8及以后8.5.xJDK1.7及以后8.0.x JDK1.7及以后 查看对应关系方法: 登陆Tomcat官网:Apache Tomcat - Welcome! 结果:...
 
iOS自动化测试方案(二):Xcode开发者工具构建WDA应用到iphone
文章目录 一、环境准备1.1、软件环境1.2、硬件环境1.3、查看版本 二、安装WDA过程2.7、构建失败,这类错误有很多,比如在选择开发者账号后,就会提示:Failed to register bundle identifier表示应用唯一注册失败2.9、第二个错误,完全…...
 
IDEA的Maven换源
前言 IDEA是个好东西,但是使用maven项目时可能会让人很难受,要么是非常慢,要么直接下载不了。所以我们需要给IDEA自带maven换源,保证我们的下载速度。 具体操作 打开IDEA安装路径,然后打开下面的文件夹 plugins\m…...
 
步进电机只响不转
我出现问题的原因是相位线接错。 我使用的滑台上示17H的步进电机,之前用的是57的步进电机。 57步进电机的相位线是A黑、A-绿、B红、B-蓝。 17步进电机的相位线是A红、A-绿、B黑、B-蓝。 这两天被一个问题困扰了好久,在调试步进电机开发板的时候电机发生…...
使用select实现服务器并发
select函数介绍: select 函数是一个用于在一组文件描述符上进行异步I/O多路复用的系统调用。它可以同时监视多个文件描述符,等待其中任何一个文件描述符准备就绪,然后进行相应的操作。 以下是select函数的原型: #include <…...
 
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
 
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
 
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
 
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
 
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
 
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
