当前位置: 首页 > news >正文

python爬虫基于管道持久化存储操作

文章目录

  • 基于管道持久化存储操作
  • scrapy的使用步骤
    • 1.先转到想创建工程的目录下:cd ...
    • 2.创建一个工程
    • 3.创建之后要转到工程目录下
    • 4.在spiders子目录中创建一个爬虫文件
    • 5.执行工程
    • setting文件中的参数
  • 基于管道持久化存储的步骤:
  • 持久化存储1:保存到本地txt文档。
      • 1. 数据解析
      • 2. 在item类中定义相关的属性
      • 3. 将解析的数据封装存储到item类型的对象
      • 4. 将item类型的对象提交给管道进行持久化存储的操作
      • 5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作
      • 6. 在配置文件中开启管道
      • 运行结果:
  • 持久化存储2:保存到数据库中。
      • 前言
        • 安装mysql
        • 安装navicat
        • 使用终端操作数据库
        • 如何使用navicat新建数据库&新建表
      • 1234步与持久化存储1完全相同。
      • 5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作
      • 6. 在配置文件中开启管道
      • 运行结果
      • 后记:

基于管道持久化存储操作

这个也是在基于scrapy框架的基础上实现的,所以scrapy的基本使用命令也是需要遵从的

scrapy的使用步骤

1.先转到想创建工程的目录下:cd …

2.创建一个工程

scrapy startproject 工程名  (XXPro:XXproject)

3.创建之后要转到工程目录下

cd 工程名

4.在spiders子目录中创建一个爬虫文件

这里不需要切换目录,在项目目录下即可。
www.xxx.com是要爬取的网站。

scrapy genspider 爬虫文件名 www.xxx.com

5.执行工程

在pycharm中直接执行是不管用的,无效。应该再在终端中执行

scrapy crawl 爬虫文件名				# 执行的是爬虫文件

setting文件中的参数

项目下有一个settings文件,里面的文件介绍如下:

# Obey robots.txt rules
ROBOTSTXT_OBEY = False#显示指定类型的日志信息 而不显示其他乱七八糟的
LOG_LEVEL = 'ERROR'# 设置用户代理 浏览器类型
USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"# 取消注释改行,意味着开启管道存储。
# 300表示优先级,数值越小优先级越高	
ITEM_PIPELINES = {"weiboPro.pipelines.WeiboproPipeline": 300,
}

基于管道持久化存储的步骤:

1. 数据解析
2. 在item类中定义相关的属性
3. 将解析的数据封装存储到item类型的对象
4. 将item类型的对象提交给管道进行持久化存储的操作
5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作
6. 在配置文件中开启管道

持久化存储1:保存到本地txt文档。

这个并不是很难。主要是理清他的思路是什么。
在工程目录下的爬虫文件(这里是weibo.py)写好保证能够爬取到信息之后,主要是将管道文件写好(pipelines.py)。
按照上面的6步走:

1. 数据解析

即爬取数据的过程

# (weibo.py爬虫文件)
# 不使用数据库,只保存到本地import scrapy
from weiboPro.items import WeiboproItem
# 导包失败:右键项目目录 => 将目标标记为 => 源代码根目录# 爬取微博失败了,返回为空。改为爬取B站了。
# 爬取B站的视频的名称和作者
class WeiboSpider(scrapy.Spider):name = "weibo"# allowed_domains = ["weibo.com"]start_urls = ["https://www.bilibili.com/"]def parse(self, response):author = []title = []div_list = response.xpath('//*[@id="i_cecream"]/div[2]/main/div[2]/div/div[1]/div')print("数据长度为", len(div_list))for div in div_list:# xpath返回的是列表,但是列表元素一定是Selector类型的对象# extract可以将Selector对象中data参数存储的字符串提取出来author = div.xpath('.//div[@class="bili-video-card__info--right"]//a/span[@class="bili-video-card__info--author"]/text()').extract()    # xpath要从上一层的xpath开始找,必须在最前面加个. !!# 对列表调用extract后,将列表的每一个Selector对象中的data对应的字符串提取了出来title=div.xpath('.//div[@class="bili-video-card__info--right"]/h3/a/text()').extract()# author, title解析到的为list,将其转为str# 将列表转为字符串: .join方法author = ''.join(author)title = ''.join(title)print('当前抽取的author', author)print('当前抽取的title', title)print(len(author), len(title))# 3,4两步都在循环内,所以是每执行一次循环将item对象提交给管道并存储到本地# 3.将解析的数据封装存储到item类型的对象item = WeiboproItem()item['author'] = authoritem['title'] = title# 4. 将item类型的对象提交给管道进行持久化存储的操作yield item

2. 在item类中定义相关的属性

找到项目目录下的items.py文件,在里面定义相关的属性
在这里插入图片描述

class WeiboproItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 在item类中定义相关的属性author = scrapy.Field()title = scrapy.Field()

3. 将解析的数据封装存储到item类型的对象

4. 将item类型的对象提交给管道进行持久化存储的操作

3,4两步在1.中已经体现,具体代码为:

            # 3.将解析的数据封装存储到item类型的对象item = WeiboproItem()item['author'] = authoritem['title'] = title# 4. 将item类型的对象提交给管道进行持久化存储的操作yield item

5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作

在这里重写了父类的两个方法:open_spider()和close_spider()方法。
open_spider()方法在开始爬虫时被调用一次,close_spider()方法在爬虫结束时被调用一次。这样实现了yield多次时,只打开关闭一次文件。
process_item()是将得到的item对象中的数据保存到本地。

# pipelines.py 管道文件
class WeiboproPipeline:fp = Nonedef open_spider(self, spider):# 重写父类的方法,只在开始爬虫时被调用一次print("开始爬虫")self.fp = open('./B站.txt', 'w', encoding='utf-8')def process_item(self, item, spider):author = item['author']title = item['title']print("当前写入的是:" + author + ":" + title + "\n")self.fp.write(author + ":" + title + "\n")return itemdef close_spider(self, spider):# 重写父类的方法,在爬虫结束时被调用一次print("结束爬虫")self.fp.close()

6. 在配置文件中开启管道

打开项目weiboPro路径下的settings.py文件,将ITEM_PIPELINES字典取消注释,即可开启管道。

ITEM_PIPELINES = {"weiboPro.pipelines.WeiboproPipeline": 300,
}

运行结果:

运行结束之后,会在本地生成B站.txt文件,其中包含爬取的author和title
在这里插入图片描述

持久化存储2:保存到数据库中。

前言

安装mysql
安装navicat

这里需要安装mysql,我还另外安装了navicat。安装好mysql之后,要新建连接,按照步骤操作即可。

使用终端操作数据库

这里需要mysql库。这个库是用来对数据库进行远程连接的,所以必须要有打开的数据库,打开的表才可以。
在这里插入图片描述

如何使用navicat新建数据库&新建表

建立好之后,再按照上面的6步按部就班来就可以。

1234步与持久化存储1完全相同。

5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作

这里的管道文件中的每一个管道类(如持久化存储1的WeiboproPipeline)对应将一组数据存储到一个平台或者载体中。上面的是保存到本地,所以我们还需要将再写一个类来将数据持久化存储到数据库中。

我也有好多东西不理解为什么要这么写

# 管道文件中一个管道类对应将一组数据存储到一个平台或者载体中
class mysqlPileLine:# 每写一个管道类要将这个类写到settings.py的ITEM_PIPELINES中。connect = Nonecursor = Nonedef open_spider(self, spider):# 重写父类的方法,在爬虫开始时调用一次# 创建连接:pymysql.Connectself.connect = pymysql.Connect(host='127.0.0.1', port=3306, user='root', password='liu1457154996', db='bzhan', charset='utf8')	# db表示数据库的名称,我上面创建的数据库名称叫bzhan,即上图中的绿色圆柱def process_item(self, item, spider):# 创建游标self.cursor = self.connect.cursor()try:self.cursor.execute('INSERT INTO bzhan (author, title) VALUES ("%s", "%s")' % (item['author'], item['title']))	# 这里的bzhan是bzhan数据库下的表的名称self.connect.commit()print("成功写入数据库", item['author'], item['title'])except Exception as e:print(e)self.connect.rollback()return itemdef close_item(self, spider):self.cursor.close()     # 关闭游标self.connect.close()    # 关闭连接

6. 在配置文件中开启管道

在上面的基础上开启mysqlPileLine管道。

ITEM_PIPELINES = {"weiboPro.pipelines.WeiboproPipeline": 300,"weiboPro.pipelines.mysqlPileLine": 301,
}

运行结果

在终端中输入scrapy crwal weibo后,得到数据库中的结果如下:
在这里插入图片描述

后记:

  • 面试题:将爬取到的数据一份存储到本地一份存储到数据库,如何实现?
    • 管道文件中一个管道类对应的是将数据存储到一种平台
    • 爬虫文件提交的item只会给管道文件中第一个被执行的管道类接受
    • process_item中的return item表示将item传递给下一个即将被执行的管道类

相关文章:

python爬虫基于管道持久化存储操作

文章目录 基于管道持久化存储操作scrapy的使用步骤1.先转到想创建工程的目录下:cd ...2.创建一个工程3.创建之后要转到工程目录下4.在spiders子目录中创建一个爬虫文件5.执行工程setting文件中的参数 基于管道持久化存储的步骤:持久化存储1:保…...

【MySQL】数据类型(二)

文章目录 一. char字符串类型二. varchar字符串类型2.1 char和varchar比较 三. 日期和时间类型四. enum和set类型4.1 set的查询 结束语 一. char字符串类型 char (L) 固定长度字符串 L是可以存储的长度,单位是字符,最大长度是255 MySQL中的字符&#xff…...

基于Matlab实现连续模型求解方法

本文介绍了如何使用Matlab实现连续模型求解方法。首先,我们介绍了连续模型的概念,并明确了使用ODE和PDE求解器来求解常微分方程和偏微分方程的步骤。然后,我们通过一个简单的例子演示了如何将问题转化为数学模型,并使用Matlab编写…...

Tomcat 与 JDK 对应版本关系

对应关系 Tomcat版本 jdk版本11.0.x JDK 21及以后10.1.x JDK11及以后10.0.xJDK1.8及以后9.0.x JDK1.8及以后8.5.xJDK1.7及以后8.0.x JDK1.7及以后 查看对应关系方法: 登陆Tomcat官网:Apache Tomcat - Welcome! 结果:...

iOS自动化测试方案(二):Xcode开发者工具构建WDA应用到iphone

文章目录 一、环境准备1.1、软件环境1.2、硬件环境1.3、查看版本 二、安装WDA过程2.7、构建失败,这类错误有很多,比如在选择开发者账号后,就会提示:Failed to register bundle identifier表示应用唯一注册失败2.9、第二个错误,完全…...

IDEA的Maven换源

前言 IDEA是个好东西,但是使用maven项目时可能会让人很难受,要么是非常慢,要么直接下载不了。所以我们需要给IDEA自带maven换源,保证我们的下载速度。 具体操作 打开IDEA安装路径,然后打开下面的文件夹 plugins\m…...

步进电机只响不转

我出现问题的原因是相位线接错。 我使用的滑台上示17H的步进电机,之前用的是57的步进电机。 57步进电机的相位线是A黑、A-绿、B红、B-蓝。 17步进电机的相位线是A红、A-绿、B黑、B-蓝。 这两天被一个问题困扰了好久,在调试步进电机开发板的时候电机发生…...

使用select实现服务器并发

select函数介绍&#xff1a; select 函数是一个用于在一组文件描述符上进行异步I/O多路复用的系统调用。它可以同时监视多个文件描述符&#xff0c;等待其中任何一个文件描述符准备就绪&#xff0c;然后进行相应的操作。 以下是select函数的原型&#xff1a; #include <…...

【Python】基于OpenCV人脸追踪、手势识别控制的求实之路FPS游戏操作

【Python】基于OpenCV人脸追踪、手势识别控制的求实之路FPS游戏操作 文章目录 手势识别人脸追踪键盘控制整体代码附录&#xff1a;列表的赋值类型和py打包列表赋值BUG复现代码改进优化总结 py打包 视频&#xff1a; 基于OpenCV人脸追踪、手势识别控制的求实之路FPS游戏操作 手…...

力扣 -- 718. 最长重复子数组

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int findLength(vector<int>& nums1, vector<int>& nums2) {int m nums1.size();int n nums2.size();//多开一行&#xff0c;多开一列vector<vector<int>> dp(m 1, ve…...

MP、MybatisPlus、联表查询、自定义sql、Constants.WRAPPER、ew (二)

描述&#xff1a; 给定一个id列表&#xff0c;更新对应列表中动物的年龄&#xff0c;使得年龄都较少一岁。 要求&#xff1a;使用条件构造器构造条件。 mapper&#xff1a; void updateAnimalAge(Param(Constants.WRAPPER) Wrapper<Animal> wrapper, Param("age&qu…...

Ubuntu服务器安全性提升:修改SSH默认端口号

在Ubuntu服务器上&#xff0c;SSH&#xff08;Secure Shell&#xff09;是一种至关重要的远程连接工具。它提供了一种安全的方式来远程连接和管理计算机系统&#xff0c;通过加密通信来确保数据的保密性和完整性。SSH协议广泛用于计算机网络中&#xff0c;用于远程管理、文件传…...

十七,IBL-打印各个Mipmap级别的hdr环境贴图

预滤波环境贴图类似于辐照度图&#xff0c;是预先计算的环境卷积贴图&#xff0c;但这次考虑了粗糙度。因为随着粗糙度的增加&#xff0c;参与环境贴图卷积的采样向量会更分散&#xff0c;导致反射更模糊&#xff0c;所以对于卷积的每个粗糙度级别&#xff0c;我们将按顺序把模…...

7、Docker网络

docker网络模式能干嘛&#xff1f; 容器间的互联和通信以及端口映射 容器IP变动时候可以通过服务名直接网络通信而不受到影响 docker 网络模式采用的是桥接模式&#xff0c;当我们创建了一个容器后docker网络就会帮我们创建一个虚拟网卡&#xff0c;这个虚拟网卡和我们的容器网…...

MySQL学习笔记23

逻辑备份&#xff1a; 1、回顾什么是逻辑备份&#xff1f; 逻辑备份就是把数据库、数据表或者数据进行导出&#xff0c;导出到一个文本文件中。 2、逻辑备份工具&#xff1a; mysqldump&#xff1a;提供全库级、数据库级别以及表级别的数据备份。 mysqldumpbinlog&#xff…...

Java基础---第十篇

系列文章目录 文章目录 系列文章目录一、说说Java 中 IO 流二、 Java IO与 NIO的区别(补充)三、java反射的作用于原理一、说说Java 中 IO 流 Java 中 IO 流分为几种? 按照流的流向分,可以分为输入流和输出流; 按照操作单元划分,可以划分为字节流和字符流; 按照流的角色…...

NLP 03(LSTM)

一、LSTM LSTM (Long Short-Term Memory) 也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比&#xff1a; 能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象 LSTM的结构更复杂,它的核心结构可以分为四个部分去解析: 遗忘门、输入门、细胞状态、输出门 LSTM内部结构…...

Python集成开发环境(IDE):WingPro for Mac

WingPro for Mac是一款Python集成开发环境&#xff08;IDE&#xff09;软件&#xff0c;它提供了一系列强大的工具和功能&#xff0c;帮助Python开发人员提高开发效率和质量。 WingPro for Mac拥有直观的用户界面和强大的调试器&#xff0c;可以帮助用户快速定位问题和修复错误…...

[Machine learning][Part3] numpy 矢量矩阵操作的基础知识

很久不接触数学了&#xff0c;machine learning需要用到一些数学知识&#xff0c;这里在重温一下相关的数学基础知识 矢量 矢量是有序的数字数组。在表示法中&#xff0c;矢量用小写粗体字母表示。矢量的元素都是相同的类型。例如&#xff0c;矢量不包含字符和数字。数组中元…...

【中秋国庆不断更】HarmonyOS对通知类消息的管理与发布通知(上)

一、通知概述 通知简介 应用可以通过通知接口发送通知消息&#xff0c;终端用户可以通过通知栏查看通知内容&#xff0c;也可以点击通知来打开应用。 通知常见的使用场景&#xff1a; 显示接收到的短消息、即时消息等。显示应用的推送消息&#xff0c;如广告、版本更新等。显示…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

用js实现常见排序算法

以下是几种常见排序算法的 JS实现&#xff0c;包括选择排序、冒泡排序、插入排序、快速排序和归并排序&#xff0c;以及每种算法的特点和复杂度分析 1. 选择排序&#xff08;Selection Sort&#xff09; 核心思想&#xff1a;每次从未排序部分选择最小元素&#xff0c;与未排…...

无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技

无需布线的革命&#xff1a;电力载波技术赋能楼宇自控系统 在楼宇自动化领域&#xff0c;传统控制系统依赖复杂的专用通信线路&#xff0c;不仅施工成本高昂&#xff0c;后期维护和扩展也极为不便。电力载波技术&#xff08;PLC&#xff09;的突破性应用&#xff0c;彻底改变了…...