当前位置: 首页 > news >正文

Shapiro-Wilk正态性检验(Shapiro和Wilk于1965年提出)

Shapiro-Wilk正态性检验是一种用于确定数据集是否服从正态分布的统计方法。它基于Shapiro和Wilk于1965年提出的检验统计量。以下是其基本原理和用途:

基本原理:

  1. 零假设(Null Hypothesis):Shapiro-Wilk检验的零假设是数据集来自于正态分布。这意味着,如果数据确实服从正态分布,则零假设成立。

  2. 计算Shapiro-Wilk统计量:检验首先计算Shapiro-Wilk统计量,这是一个衡量数据与正态分布拟合的度量。该统计量基于数据的观察值和正态分布的期望值之间的差异。

  3. 与临界值比较:接下来,Shapiro-Wilk统计量与临界值进行比较。临界值是根据所选的显著性水平(通常为5%)和数据集的大小计算得出的。如果Shapiro-Wilk统计量小于临界值,就意味着数据不太可能来自于正态分布。

  4. 做出决策:根据统计量与临界值的比较,可以决定是否拒绝零假设。如果统计量足够小,小于临界值,通常会拒绝零假设,这意味着数据不服从正态分布。否则,不能拒绝零假设,这表示数据可能服从正态分布。

用途:

  1. 数据分布检查:Shapiro-Wilk检验可用于验证数据是否符合正态分布的假设。这对于许多统计分析和模型建立的前提非常重要,因为许多统计方法都要求数据服从正态分布。

  2. 质量控制:在制造业和质量控制中,Shapiro-Wilk检验可以用来检查生产过程是否产生了正态分布的输出。如果不是,可能需要采取措施来改进过程。

  3. 金融分析:在金融领域,正态分布假设经常用于分析资产价格变动。Shapiro-Wilk检验可以用来验证这种假设的有效性。

  4. 生物统计学:在生物统计学中,研究人员可能使用Shapiro-Wilk检验来确定生物数据是否遵循正态分布,例如基因表达数据或生物测量数据。

总之,Shapiro-Wilk正态性检验是一种常用的统计工具,可用于验证数据是否符合正态分布的假设,从而支持各种领域的分析和决策。它在小样本情况下的效力较高,适用于许多统计问题。

from scipy import stats
import numpy as np# 创建一个示例数据集(这里使用正态分布数据)
data = np.random.normal(0, 1, 100)# 执行Shapiro-Wilk正态性检验
statistic, p_value = stats.shapiro(data)# 输出检验结果
print("Shapiro-Wilk统计量:", statistic)
print("p-value:", p_value)# 根据p-value做出决策
alpha = 0.05  # 显著性水平
if p_value > alpha:print("不能拒绝零假设,数据可能服从正态分布")
else:print("拒绝零假设,数据不服从正态分布")

 

Shapiro-Wilk正态性检验对检验样本大小有一定的要求。具体来说,Shapiro-Wilk检验在样本大小较小(通常小于大约50-200,具体取决于不同文献和实践)时可能不太适用,并且在这种情况下其效力可能会降低。这是由于统计检验的性质和假设。

主要的考虑因素包括:

  1. 统计性能:Shapiro-Wilk检验在大样本下通常具有较好的统计性能,可以较好地检测到数据的偏离正态分布的情况。但是在小样本下,其性能可能较差,可能无法可靠地识别非正态性。

  2. 假设的严格性:Shapiro-Wilk检验对于样本大小的要求与其检验假设的严格性有关。较小的样本容易受到偶然因素的影响,从而影响检验的结果。

  3. 显著性水平:样本大小较小时,为了达到一定的显著性水平,需要更大的统计效力。这可能需要更严格的判定标准,从而增加了拒绝零假设的难度。

如果你的样本较小,而且需要进行正态性检验,可以考虑使用其他方法,如观察Q-Q图、直方图、小样本正态性检验(如Shapiro-Francia检验),或者考虑非参数统计方法,这些方法在小样本情况下可能更适合。此外,正态性检验通常应与领域知识和问题的背景结合使用,而不应仅仅依赖于统计检验的结果。

 

相关文章:

Shapiro-Wilk正态性检验(Shapiro和Wilk于1965年提出)

Shapiro-Wilk正态性检验是一种用于确定数据集是否服从正态分布的统计方法。它基于Shapiro和Wilk于1965年提出的检验统计量。以下是其基本原理和用途: 基本原理: 零假设(Null Hypothesis):Shapiro-Wilk检验的零假设是数…...

debian设置允许ssh连接

解决新debian系统安装后不能通过ssh连接的问题。 默认情况下,Debian系统不开启SSH远程登录,需要手动安装SSH软件包并设置开机启动。 > 设置允许root登录传送门:debian设置允许root登录 首先检查/etc/ssh/sshd_config文件是否存在。 注意…...

【C语言经典100例题-66】(用指针解决)输入3个数a,b,c,按大小顺序输出。

代码&#xff1a; #include<stdio.h> #define _CRT_SECURE_NO_WARNINGS 1//VS编译器使用scanf函数时会报错&#xff0c;所以添加宏定义 swap(p1, p2) int* p1, * p2; {int p;p *p1;*p1 *p2;*p2 p; } int main() {int n1, n2, n3;int* pointer1, * pointer2, * point…...

【STM32 CubeMX】移植u8g2(一次成功)

文章目录 前言一、下载u8g2源文件二、复制和更改文件2.1 复制文件2.2 修改文件u8g2_d_setup文件u8g2_d_memory 三、编写oled.c和oled.h文件3.1 CubeMX配置I2C3.2 编写文件oled.holed.c 四、测试代码main函数测试代码 总结 前言 在本文中&#xff0c;我们将介绍如何在STM32上成…...

华为云智能化组装式交付方案 ——金融级PaaS业务洞察及Web3实践的卓越贡献

伴随信息技术与金融业务加速的融合&#xff0c;企业应用服务平台&#xff08;PaaS&#xff09;已从幕后走向台前&#xff0c;成为推动行业数字化转型的关键力量。此背景下&#xff0c;华为云PaaS智能化组装式交付方案闪耀全场&#xff0c;在近日结束的华为全联接大会 2023上倍受…...

Halcon Image相关算子(二)

(1) dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : ) 功能&#xff1a;从输入图像中选择像素满足阈值条件的那些区域。 图形输入参数&#xff1a;OrigImage&#xff1a;原始图像&#xff1b; 图形输入参数&#xff1a;ThresholdImage&a…...

Rust 多线程编程

一个进程一定有一个主线程&#xff0c;主线程之外创建出来的线程称为子线程 多线程编程&#xff0c;其实就是在主线程之外创建子线程&#xff0c;让子线程和主线程并发运行&#xff0c;完成各自的任务。 Rust语言支持多线程编程。 Rust语言标准库中的 std::thread 模块用于多线…...

JavaScript高阶班之ES6 → ES11(八)

JavaScript高阶班之ES6 → ES11 1、ES6新特性1.1、let 关键字1.2、const关键字1.3、变量的解构赋值1.3.1、数组的解构赋值1.3.2、对象的解构赋值 1.4、模板字符串1.5、简化对象写法1.6、箭头函数1.7、函数参数默认值1.8、rest参数1.9、spread扩展运算符1.9.1、数组合并1.9.2、数…...

网页中嵌套网页制作方法

<!DOCTYPE html> <html> <head> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <meta charset"UTF-8"> <title>网页搜索</title> <style> body { ba…...

系统集成项目管理总结(笔记)

系统集成项目管理总结 基础知识 第一章 信息化知识 第二章 信息系统服务管理 第三章 系统集成专业技术 第四章 项目管理一般知识 第五章 立项管理 第六章 整体管理 第七章 范围管理 第八章 进度管理 第九章 成本管理 第十章 质量管理 第十一章 人力资源管理 第十二…...

如何给Nginx配置访问IP白名单

一、Nginx配置访问IP白名单 有时部署的应用需要只允许某些特定的IP能够访问&#xff0c;其他IP不允许访问&#xff0c;这时&#xff0c;就要设置访问白名单&#xff1b; 设置访问白名单有多种方式&#xff1a; 1.通过网络防火墙配置&#xff0c;例如阿里云/华为云管理平台 2.…...

【VIM】VIM配合使用的工具

6-1 课程总结-vim虐我千百遍&#xff0c;我待 vim 如初恋_哔哩哔哩_bilibili...

git你学“废”了吗?——git本地仓库的创建

git你学“废”了吗&#xff1f;——git本地仓库的创建&#x1f60e; 前言&#x1f64c;初识gitgit 本地仓库的创建1、基于centos7环境下 git的下载2、设置自己的用户名和邮箱 查看.git中的结构区分清楚版本库和工作区 查看git中的相关内容查看仓库的状态 总结撒花&#x1f49e;…...

AWS Lambda Golang HelloWorld 快速入门

操作步骤 以下测试基于 WSL2 Ubuntu 22.04 环境 # 下载最新 golang wget https://golang.google.cn/dl/go1.21.1.linux-amd64.tar.gz# 解压 tar -C ~/.local/ -xzf go1.21.1.linux-amd64.tar.gz# 配置环境变量 PATH echo export PATH$PATH:~/.local/go/bin >> ~/.bashrc …...

【C++】单例模式

文章目录 一. 介绍二. 饿汉模式三. 懒汉模式四. 饿汉模式和懒汉模式对比 一. 介绍 单例模式是属于设计模式的一种&#xff0c;那什么是设计模式呢&#xff1f; 设计模式&#xff08;Design Pattern&#xff09;是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总…...

【kubernetes】使用luakube访问kubernetes api

文章目录 1 kubernetes client2 luakube初体验3 luakube代码分析4 luakube包的调用5 lua相关5.1 self5.2 metatable5.2.1 使用metatable对table新增操作符5.2.2 使用metatable对table新增方法5.2.3 再探luakube 6 参考文档 1 kubernetes client 客户端列出了各种语言对应的访问…...

【算法分析与设计】贪心算法(下)

目录 一、单源最短路径1.1 算法基本思想1.2 算法设计思想1.3 算法的正确性和计算复杂性1.4 归纳证明思路1.5 归纳步骤证明 二、最小生成树2.1 最小生成树性质2.1.1 生成树的性质2.1.2 生成树性质的应用 2.2 Prim算法2.2.1 正确性证明2.2.2 归纳基础2.2.3 归纳步骤2.3 Kruskal算…...

Arm Cache学习资料大汇总

关键词&#xff1a;cache学习、mmu学习、cache资料、mmu资料、arm资料、armv8资料、armv9资料、 trustzone视频、tee视频、ATF视频、secureboot视频、安全启动视频、selinux视频&#xff0c;cache视频、mmu视频&#xff0c;armv8视频、armv9视频、FF-A视频、密码学视频、RME/CC…...

Docker 学习总结(79)—— Dockerfile 编写技巧总结

目标 更快的构建速度 更小的 Docker 镜像大小 更少的 Docker 镜像层 充分利用镜像缓存 增加 Dockerfile 可读性 让 Docker 容器使用起来更简单 总结 编写 .dockerignore 文件 容器只运行单个应用 将多个 RUN 指令合并为一个 基础镜像的标签不要用 latest 每个 RUN 指令后删除多…...

链表经典面试题(二)

返回中间结点 1.中间结点的题目2.中间结点的图文分析3.中间结点的基本代码4.中间结点的优化代码 1.中间结点的题目 2.中间结点的图文分析 方法1&#xff1a;先求整体长度&#xff0c;再除以2&#xff0c;所得到的就是中间结点 方法2&#xff1a;双指针法&#xff0c;快指针走两…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...