当前位置: 首页 > news >正文

Docker 学习总结(79)—— Dockerfile 编写技巧总结

目标

  • 更快的构建速度

  • 更小的 Docker 镜像大小

  • 更少的 Docker 镜像层

  • 充分利用镜像缓存

  • 增加 Dockerfile 可读性

  • 让 Docker 容器使用起来更简单

总结

  • 编写 .dockerignore 文件

  • 容器只运行单个应用

  • 将多个 RUN 指令合并为一个

  • 基础镜像的标签不要用 latest

  • 每个 RUN 指令后删除多余文件

  • 选择合适的基础镜像(alpine 版本最好)

  • 设置 WORKDIR 和 CMD

  • 使用 ENTRYPOINT  (可选)

  • 在 entrypoint 脚本中使用 exec

  • COPY 与 ADD 优先使用前者

  • 合理调整 COPY 与 RUN 的顺序

  • 设置默认的环境变量,映射端口和数据卷

  • 使用 LABEL 设置镜像元数据

  • 添加 HEALTHCHECK

  • 多阶段构建

示例

示例 Dockerfile 犯了几乎所有的错(当然我是故意的)。接下来,我会一步步优化它。假设我们需要使用 Docker 运行一个 Node.js 应用,下面就是它的 Dockerfile(CMD 指令太复杂了,所以我简化了,它是错误的,仅供参考)。

<

相关文章:

Docker 学习总结(79)—— Dockerfile 编写技巧总结

目标 更快的构建速度 更小的 Docker 镜像大小 更少的 Docker 镜像层 充分利用镜像缓存 增加 Dockerfile 可读性 让 Docker 容器使用起来更简单 总结 编写 .dockerignore 文件 容器只运行单个应用 将多个 RUN 指令合并为一个 基础镜像的标签不要用 latest 每个 RUN 指令后删除多…...

链表经典面试题(二)

返回中间结点 1.中间结点的题目2.中间结点的图文分析3.中间结点的基本代码4.中间结点的优化代码 1.中间结点的题目 2.中间结点的图文分析 方法1&#xff1a;先求整体长度&#xff0c;再除以2&#xff0c;所得到的就是中间结点 方法2&#xff1a;双指针法&#xff0c;快指针走两…...

89、Redis 的 value 所支持的数据类型(String、List、Set、Zset、Hash)---->Zset 相关命令

本次讲解要点&#xff1a; ** Set相关命令&#xff1a;是指value中的数据类型** 启动redis服务器&#xff1a; 打开小黑窗&#xff1a; C:\Users\JH>e: E:>cd E:\install\Redis6.0\Redis-x64-6.0.14\bin E:\install\Redis6.0\Redis-x64-6.0.14\bin>redis-server.exe …...

知识图谱02——使用python将信息录入neo4j

将文档传入chatgpt&#xff0c;生成对应的cypher语句 链接: https://pan.baidu.com/s/1Ny-ttbBSpqYEigwYiCWMeA?pwdc7sc 提取码: c7sc 使用命令行安装对应的包 pip install neo4jchatgpt生成出的txt文档中的内容如下&#xff1a; MERGE (Node1:Entity {name: 原始舱单提运单…...

greenDAO-Android轻量级快速ORM框架

官网 https://github.com/greenrobot/greenDAO 简介 greenDAO is a light & fast ORM for Android that maps objects to SQLite databases. Being highly optimized for Android, greenDAO offers great performance and consumes minimal memory. Home page, documen…...

结构型设计模式——组合模式

摘要 组合模式(composite pattern): 允许你将对象组合成树形结构来表现"整体/部分"层次结构. 组合能让客户以一致的方式处理个别对象以及对象组合。 一、组合模式的意图 将对象组合成树形结构来表示“整体/部分”层次关系&#xff0c;允许用户以相同的方式处理单独…...

40. 组合总和 II

给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 示例 1: 输入: candidates [10,1,2,7,6,1,5…...

安卓玩机-----给app加注册码 app加弹窗 云注入弹窗

在对接很多工作室业务中有些客户需要在他们自带的有些app中加注册码或者验证码的需求。其实操作起来也很简单。很多反编译软件有自带的注入功能。例如注入弹窗。这个是需要对应的注册码来启动应用。而且是随机id。重新安装app后需要重新注册才可以继续使用&#xff0c;原则上可…...

NLP的不同研究领域和最新发展的概述

一、介绍 作为理解、生成和处理自然语言文本的有效方法&#xff0c;自然语言处理 &#xff08;NLP&#xff09; 的研究近年来迅速普及并被广泛采用。鉴于NLP的快速发展&#xff0c;获得该领域的概述和维护它是困难的。这篇博文旨在提供NLP不同研究领域的结构化概述&#xff0c;…...

1.物联网射频识别,RFID概念、组成、中间件、标准,全球物品编码——EPC码

1.RFID概念 RFID是Radio Frequency Identification的缩写&#xff0c;又称无线射频识别&#xff0c;是一种通信技术&#xff0c;可通过无线电讯号识别特定目标并读写相关数据&#xff0c;而无需与被识别物体建立机械或光学接触。 RFID&#xff08;Radio Frequency Identificati…...

MySQL函数与控制结构

MySQL数据库管理系统在数据存储和检索方面发挥着重要作用。除了基础的数据操作外,MySQL还提供了丰富的函数和控制结构来进行更复杂的数据处理。 本文将详细介绍如何在MySQL中使用begin-end语句块、自定义函数、以及各种控制语句。通过《三国志》游戏数据的实例将更深入地了解…...

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式 FesianXu 20230928 at Baidu Search Team 前言 Prompt Tuning是一种PEFT方法&#xff08;Parameter-Efficient FineTune&#xff09;&#xff0c;旨在以高效的方式对LLM模型进行下游任务适配&#xff0c;本…...

如何在 Elasticsearch 中使用 Openai Embedding 进行语义搜索

随着强大的 GPT 模型的出现&#xff0c;文本的语义提取得到了改进。 在本文中&#xff0c;我们将使用嵌入向量在文档中进行搜索&#xff0c;而不是使用关键字进行老式搜索。 什么是嵌入 - embedding&#xff1f; 在深度学习术语中&#xff0c;嵌入是文本或图像等内容的数字表示…...

世界第一ERP厂商SAP,推出类ChatGPT产品—Joule

9月27日&#xff0c;世界排名第一ERP厂商SAP在官网宣布&#xff0c;推出生成式AI助手Joule&#xff0c;并将其集成在采购、供应链、销售、人力资源、营销、数据分析等产品矩阵中&#xff0c;帮助客户实现降本增效。 据悉&#xff0c;Joule是一款功能类似ChatGPT的产品&#xf…...

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③ 第十八章 Linux系统对中断的处理 ③18.5 编写使用中断的按键驱动程序 ③18.5.1 编程思路18.5.1.1 设备树相关18.5.1.2 驱动代码相关 18.5.2 先编写驱动程序18.5.2.1 从设备树获得 GPIO18.5.2.2 从 GPIO获得中断号18.5…...

【Python】返回指定时间对应的时间戳

使用模块datetime&#xff0c;附赠一个没啥用的“时间推算”功能(获取n天后对应的时间 代码&#xff1a; import datetimedef GetTimestamp(year,month,day,hour,minute,second,*,relativeNone,timezoneNone):#返回指定时间戳。指定relative时进行时间推算"""根…...

微服务moleculer03

1. Moleculer 目前支持SQLite&#xff0c;MySQL&#xff0c;MariaDB&#xff0c;PostgreSQL&#xff0c;MSSQL等数据库&#xff0c;这里以mysql为例 2. package.json 增加mysql依赖 "mysql2": "^2.3.3", "sequelize": "^6.21.3", &q…...

[React] react-router-dom的v5和v6

v5 版本既兼容了类组件&#xff08;react v16.8前&#xff09;&#xff0c;又兼容了函数组件&#xff08;react v16.8及以后&#xff0c;即hook&#xff09;。v6 文档把路由组件默认接受的三个属性给移除了&#xff0c;若仍然使用 this.props.history.push()&#xff0c;此时pr…...

Linux命令(91)之mv

linux命令之mv 1.mv介绍 linux命令mv是用来移动文件或目录&#xff0c;并且也可以用来更改文件或目录的名字 2.mv用法 mv [参数] src dest mv常用参数 参数说明-f强制移动&#xff0c;不提示 3.实例 3.1.重命名文件1.txt为ztj.txt 命令&#xff1a; mv 1.txt ztj.txt …...

C++ 强制类型转换(int double)、查看数据类型、自动决定类型、三元表达式、取反、

强制类型转换&#xff08; int 与 double&#xff09; #include <iostream> using namespace std;int main() {// 数据类型转换char c1;short s1;int n 1;long l 1;float f 1;double d 1;int p 0;int cc (int)c;// 注意&#xff1a;字符 转 整形时 是有问题的// “…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...