当前位置: 首页 > news >正文

40. 组合总和 II

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

提示:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30
class Solution {
public:vector<int> path;vector<vector<int>> res;int sum=0;void func(vector<int>& candidates, int target,int index){if(sum>target)return;if(sum==target){res.push_back(path);return;}for(int i=index;i<candidates.size();i++){if(i>index&&candidates[i]==candidates[i-1])//不是通过递归进入的循环时,i>indexcontinue;sum+=candidates[i];path.push_back(candidates[i]);func(candidates,target,i+1);sum-=candidates[i];path.pop_back();}}vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {sort(candidates.begin(),candidates.end());func(candidates,target,0);return res;}
};

相关文章:

40. 组合总和 II

给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 示例 1: 输入: candidates [10,1,2,7,6,1,5…...

安卓玩机-----给app加注册码 app加弹窗 云注入弹窗

在对接很多工作室业务中有些客户需要在他们自带的有些app中加注册码或者验证码的需求。其实操作起来也很简单。很多反编译软件有自带的注入功能。例如注入弹窗。这个是需要对应的注册码来启动应用。而且是随机id。重新安装app后需要重新注册才可以继续使用&#xff0c;原则上可…...

NLP的不同研究领域和最新发展的概述

一、介绍 作为理解、生成和处理自然语言文本的有效方法&#xff0c;自然语言处理 &#xff08;NLP&#xff09; 的研究近年来迅速普及并被广泛采用。鉴于NLP的快速发展&#xff0c;获得该领域的概述和维护它是困难的。这篇博文旨在提供NLP不同研究领域的结构化概述&#xff0c;…...

1.物联网射频识别,RFID概念、组成、中间件、标准,全球物品编码——EPC码

1.RFID概念 RFID是Radio Frequency Identification的缩写&#xff0c;又称无线射频识别&#xff0c;是一种通信技术&#xff0c;可通过无线电讯号识别特定目标并读写相关数据&#xff0c;而无需与被识别物体建立机械或光学接触。 RFID&#xff08;Radio Frequency Identificati…...

MySQL函数与控制结构

MySQL数据库管理系统在数据存储和检索方面发挥着重要作用。除了基础的数据操作外,MySQL还提供了丰富的函数和控制结构来进行更复杂的数据处理。 本文将详细介绍如何在MySQL中使用begin-end语句块、自定义函数、以及各种控制语句。通过《三国志》游戏数据的实例将更深入地了解…...

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式

【论文极速读】Prompt Tuning——一种高效的LLM模型下游任务适配方式 FesianXu 20230928 at Baidu Search Team 前言 Prompt Tuning是一种PEFT方法&#xff08;Parameter-Efficient FineTune&#xff09;&#xff0c;旨在以高效的方式对LLM模型进行下游任务适配&#xff0c;本…...

如何在 Elasticsearch 中使用 Openai Embedding 进行语义搜索

随着强大的 GPT 模型的出现&#xff0c;文本的语义提取得到了改进。 在本文中&#xff0c;我们将使用嵌入向量在文档中进行搜索&#xff0c;而不是使用关键字进行老式搜索。 什么是嵌入 - embedding&#xff1f; 在深度学习术语中&#xff0c;嵌入是文本或图像等内容的数字表示…...

世界第一ERP厂商SAP,推出类ChatGPT产品—Joule

9月27日&#xff0c;世界排名第一ERP厂商SAP在官网宣布&#xff0c;推出生成式AI助手Joule&#xff0c;并将其集成在采购、供应链、销售、人力资源、营销、数据分析等产品矩阵中&#xff0c;帮助客户实现降本增效。 据悉&#xff0c;Joule是一款功能类似ChatGPT的产品&#xf…...

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③

嵌入式Linux应用开发-基础知识-第十八章系统对中断的处理③ 第十八章 Linux系统对中断的处理 ③18.5 编写使用中断的按键驱动程序 ③18.5.1 编程思路18.5.1.1 设备树相关18.5.1.2 驱动代码相关 18.5.2 先编写驱动程序18.5.2.1 从设备树获得 GPIO18.5.2.2 从 GPIO获得中断号18.5…...

【Python】返回指定时间对应的时间戳

使用模块datetime&#xff0c;附赠一个没啥用的“时间推算”功能(获取n天后对应的时间 代码&#xff1a; import datetimedef GetTimestamp(year,month,day,hour,minute,second,*,relativeNone,timezoneNone):#返回指定时间戳。指定relative时进行时间推算"""根…...

微服务moleculer03

1. Moleculer 目前支持SQLite&#xff0c;MySQL&#xff0c;MariaDB&#xff0c;PostgreSQL&#xff0c;MSSQL等数据库&#xff0c;这里以mysql为例 2. package.json 增加mysql依赖 "mysql2": "^2.3.3", "sequelize": "^6.21.3", &q…...

[React] react-router-dom的v5和v6

v5 版本既兼容了类组件&#xff08;react v16.8前&#xff09;&#xff0c;又兼容了函数组件&#xff08;react v16.8及以后&#xff0c;即hook&#xff09;。v6 文档把路由组件默认接受的三个属性给移除了&#xff0c;若仍然使用 this.props.history.push()&#xff0c;此时pr…...

Linux命令(91)之mv

linux命令之mv 1.mv介绍 linux命令mv是用来移动文件或目录&#xff0c;并且也可以用来更改文件或目录的名字 2.mv用法 mv [参数] src dest mv常用参数 参数说明-f强制移动&#xff0c;不提示 3.实例 3.1.重命名文件1.txt为ztj.txt 命令&#xff1a; mv 1.txt ztj.txt …...

C++ 强制类型转换(int double)、查看数据类型、自动决定类型、三元表达式、取反、

强制类型转换&#xff08; int 与 double&#xff09; #include <iostream> using namespace std;int main() {// 数据类型转换char c1;short s1;int n 1;long l 1;float f 1;double d 1;int p 0;int cc (int)c;// 注意&#xff1a;字符 转 整形时 是有问题的// “…...

Android自动化测试之MonkeyRunner--从环境构建、参数讲解、脚本制作到实战技巧

monkeyrunner 概述、环境搭建 monkeyrunner环境搭建 (1) JDK的安装不配置 http://www.oracle.com/technetwork/java/javase/downloads/index.html (2) 安装Python编译器 https://www.python.org/download/ (3) 设置环境变量(配置Monkeyrunner工具至path目彔下也可丌配置) (4) …...

Neural Insights for Digital Marketing Content Design 阅读笔记

KDD-2023 很值得读的文章&#xff01; 1 摘要 电商里&#xff0c;营销内容的实验&#xff0c;很重要。 然而&#xff0c;创作营销内容是一个手动和耗时的过程&#xff0c;缺乏明确的指导原则。 本文通过 基于历史数据的AI驱动的可行性洞察&#xff0c;来弥补 营销内容创作 和…...

BI神器Power Query(26)-- 使用PQ实现表格多列转换(2/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...

中间件中使用到的设计模式

本文记录阅读源码的过程中&#xff0c;了解/学习到中间件使用到的设计模式及具体运用的组件/功能点 1. 策略模式 1. Nacos2.x中grpc处理时通过请求type来进行具体Handler映射&#xff0c;找到对应处理器。 2. 模板模式 1. Nacos配置数据读取&#xff0c;内部数据源、外部数据…...

运用动态内存实现通讯录(增删查改+排序)

目录 前言&#xff1a; 实现通讯录&#xff1a; 1.创建和调用菜单&#xff1a; 2.创建联系人信息和通讯录&#xff1a; 3.初始化通讯录&#xff1a; 4.增加联系人&#xff1a; 5.显示联系人&#xff1a; 6.删除联系人&#xff1a; ​编辑 7.查找联系人&#xff1a; ​…...

基于Cplex的人员排班问题建模求解(JavaAPI)

使用Java调用Cplex实现了阿里mindopt求解器的案例&#xff08;https://opt.aliyun.com/platform/case&#xff09;人员排班问题。 这里写目录标题 人员排班问题问题描述数学建模编程求解&#xff08;CplexJavaAPI&#xff09;求解结果 人员排班问题 随着现在产业的发展&#…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...