当前位置: 首页 > news >正文

实现将一张图片中的目标图片抠出来

要在python中实现将一张图片中的目标图片裁剪出来,需要用到图像处理及机器学习库,以下是一个常用的基本框架

  1. 加载图片并使用OpenCV库将其转换为灰度图像
import cv2img = cv2.imread('screenshot.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  1. 准备模板图像,转为灰度图像
    template = cv2.imread('template.jpg', 0)
  2. 使用OpenCV中的函数cv2.matchTemplate()在目标图像中搜索图像,找到匹配的区域并记录坐标位置
result = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF_NORMED)
_, max_val, _, max_loc = cv2.minMaxLoc(result)
  1. 根据匹配位置及模板大小,将匹配区域裁剪出来
    w, h = template.shape[::-1] match_area = img[max_loc[1]:max_loc[1]+h, max_loc[0]:max_loc[0]+w]

示例代码

import cv2
img = cv2.imread("source.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template = cv2.imread("dist.jpg")
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
result = cv2.matchTemplate(gray, template_gray, cv2.TM_CCORR_NORMED)
_,max_val, _, max_loc = cv2.minMaxLoc(result)
w, h = template_gray.shape[::-1]
match_area = img[max_loc[1]:max_loc[1]+h, max_loc[0]:max_loc[0]+w]
cv2.imshow("match area", match_area)
cv2.waitKey(0)
cv2.destroyAllWindows()

异常问题解决
报错信息如下: cv2.error: OpenCV(4.8.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\templmatch.cpp:1164: error: (-215:Assertion failed) (depth == CV_8U || depth == CV_32F) && type == _templ.type() && _img.dims() <= 2 in function ‘cv::matchTemplate’
这个错误通常是由于匹配模板图像的深度不正确导致的。匹配函数cv2.matchTemplate()的模板图像应该是单通道灰度图像或3通道BGR图像。如果是单通道灰度图像,则深度应为CV_8U,如果是BGR图像,则深度应为CV_8U或CV_32F。

解决方法是确保你的模板图像是一个单通道灰度图像或3通道BGR图像,并将深度相应地设置为CV_8U或CV_32F。可以使用以下代码转换图像并将其设置为正确的深度(例如,将BGR图像转换为灰度图像):

import cv2# Load the image and convert it to grayscale
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Load the template and convert it to grayscale
template = cv2.imread('template.jpg')
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)# Match the template to the image
result = cv2.matchTemplate(gray, template_gray, cv2.TM_CCOEFF_NORMED)

相关文章:

实现将一张图片中的目标图片抠出来

要在python中实现将一张图片中的目标图片裁剪出来&#xff0c;需要用到图像处理及机器学习库&#xff0c;以下是一个常用的基本框架 加载图片并使用OpenCV库将其转换为灰度图像 import cv2img cv2.imread(screenshot.jpg) gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)准备模…...

Rust 使用Cargo

Rust 使用技巧 Rust 使用crates 假设你正在编写一个 Rust 程序&#xff0c;要使用一个名为 rand 的第三方库来生成随机数。首先&#xff0c;你需要在 Cargo.toml 文件中添加以下依赖项&#xff1a; toml [dependencies] rand "0.7.3" 然后运行 cargo build&…...

【k8s】集群搭建篇

文章目录 搭建kubernetes集群kubeadm初始化操作安装软件(master、所有node节点)Kubernetes Master初始化Kubernetes Node加入集群部署 CNI 网络插件测试 kubernetes 集群停止服务并删除原来的配置 二进制搭建(单master集群)初始化操作部署etcd集群安装Docker部署master节点解压…...

10.1select并发服务器以及客户端

服务器&#xff1a; #include<myhead.h>//do-while只是为了不让花括号单独存在&#xff0c;并不循环 #define ERR_MSG(msg) do{\fprintf(stderr,"%d:",__LINE__);\perror(msg);\ }while(0);#define PORT 8888//端口号1024-49151 #define IP "192.168.2.5…...

几个好用的测试HTTP请求的网站

Reqres (https://reqres.in)&#xff1a;Reqres提供了一个模拟的REST API&#xff0c;您可以使用它来测试POST、GET、PUT等HTTP请求&#xff0c;并获得相应的响应结果。 JSONPlaceholder (https://jsonplaceholder.typicode.com)&#xff1a;JSONPlaceholder是一个免费的JSON测…...

kafka简易搭建(windows环境)

1&#xff0c;下载 Apache Kafka 查找 kafka_2.13-3.2.1.tgz 2&#xff0c;java版本需要17以上 3&#xff0c;配置server.properties的log.dirs目录、zookeeper.properties 的dataDir目录 windows反斜杠地址 4&#xff0c;启动 cd D:\app\kafka_2.13-3.2.1 .\bin\window…...

毕业设计选题uniapp+springboot新闻资讯小程序源码 开题 lw 调试

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…...

Linux系统编程基础:进程控制

文章目录 一.子进程的创建操作系统内核视角下的父子进程存在形式验证子进程对父进程数据的写时拷贝 二.进程等待进程非阻塞等待示例: 三.进程替换内核视角下的进程替换过程:综合利用进程控制系统接口实现简单的shell进程 进程控制主要分为三个方面,分别是:子进程的创建,进程等待…...

选择和操作元素

上一篇文档我们介绍了DOM元素和DOM的获取&#xff1b;其实除了获取DOM&#xff0c;我们也可以去替换DOM元素中的文本 document.querySelector(.message).textContent "&#x1f389;Correct Number"● 除此之外&#xff0c;我们可以设置那个数字部分 document.que…...

消息中间件(二)——kafka

文章目录 Apache Kafka综述什么是消息系统&#xff1f;点对点消息类型发布-订阅消息类型 什么是Kafka?优点关键术语Kafka基本原理用例 Apache Kafka综述 在大数据中&#xff0c;会使用到大量的数据。面对这些海量的数据&#xff0c;我们一是需要做到能够收集这些数据&#xf…...

量化交易全流程(四)

本节目录 数据准备&#xff08;数据源与数据库&#xff09; CTA策略 数据源&#xff1a; 在进行量化分析的时候&#xff0c;最基础的工作是数据准备&#xff0c;即收集数据、清理数据、建立数据库。下面先讨论收集数据的来源&#xff0c;数据来源可分为两大类&#xff1a;免…...

idea 如何在命令行快速打开项目

背景 在命令行中从git仓库检出项目&#xff0c;如何在该命令行下快速用idea 打开当前项目&#xff0c;类似vscode 可以通过在项目根目录下执行 code . 快速打开当前项目。 步骤 以macos 为例 vim /usr/local/bin/idea 输入如下内容 #!/bin/sh open -na "IntelliJ IDE…...

YOLOV8-DET转ONNX和RKNN

目录 1. 前言 2.环境配置 (1) RK3588开发板Python环境 (2) PC转onnx和rknn的环境 3.PT模型转onnx 4. ONNX模型转RKNN 6.测试结果 1. 前言 yolov8就不介绍了&#xff0c;详细的请见YOLOV8详细对比&#xff0c;本文章注重实际的使用&#xff0c;从拿到yolov8的pt检测模型&…...

数量关系 --- 方程

目录 一、代入排除法 例题 练习 二、数字特性 例题 练习 整除特性 例题 倍数特性 普通倍数 因子倍数 比例倍数 例题 练习 三、方程法 例题 练习 四、 不定方程&#xff08;组&#xff09; 例题 练习 一、代入排除法 例题 素数&#xff1a…...

【C语言 模拟实现strlen函数的三种方法】

C语言程序设计笔记---022 C语言之模拟实现strlen函数1、介绍strlen函数2、模拟strlen函数的三种方法2.1、计数器法模拟实现strlen函数2.2、递归法模拟实现strlen函数2.3、指针减指针法模拟实现strlen函数 3、结语 C语言之模拟实现strlen函数 前言&#xff1a; 通过C语言字符串…...

MySQL数据库与表管理《三国志》为例

在数据库管理中,一个典型的应用场景是游戏数据的存储和管理。以经典游戏《三国志》为例,该游戏具有多个角色、任务、装备等元素,如何有效地存储和管理这些数据就成为了一个问题。 本文将通过《三国志》的实例,详细解释如何在MySQL中进行数据库和表的管理。 文章目录 《三国…...

D. Jellyfish and Mex - DP

题面 分析&#xff1a; 题目最终需要达到MEX位0&#xff0c;也就是从最开始的MEX变成0后m的最小值&#xff0c;可以设 d p i dp_i dpi​表示当前MEX为 i i i时&#xff0c;m的最小值&#xff0c;那么就可以根据前一个状态推出后一个状态&#xff0c;也就是假如当前MEX是 i i …...

奥斯卡·王尔德

奥斯卡王尔德 奥斯卡王尔德&#xff08;Oscar Wilde&#xff0c;1854年10月16日—1900年11月30日&#xff09;&#xff0c;出生于爱尔兰都柏林&#xff0c;19世纪英国&#xff08;准确来讲是爱尔兰&#xff0c;但是当时由英国统治&#xff09;最伟大的作家与艺术家之一&#xf…...

IDEA常用快捷键大全

整理了一些IDEA开发常用的快捷键&#xff1a; 快捷键组合实现效果psvm Tab键 / main Tab键public static void main(String[] args)sout Tab键System.out.println()Ctrl X删除当前行Ctrl D复制当前行AltInsert(或右键Generate)生成代码(如get,set方法,构造函数等)CtrlAltT…...

Java之多线程的综合练习二

练习六&#xff1a;多线程统计并求最大值 需求&#xff1a; 在上一题基础上继续完成如下需求&#xff1a; 每次抽的过程中&#xff0c;不打印&#xff0c;抽完时一次性打印(随机) 在此次抽奖过程中&#xff0c;抽奖箱1总共产生了6个奖项。 分别为&#xff1a;10,20,100,50…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...