当前位置: 首页 > news >正文

Transformer学习-self-attention

这里写自定义目录标题

  • Self-attention
  • Multi-head self-attention
  • 用self-attention解决其他问题

Self-attention

  1. 用Wq、Wk、Wv分别乘输入向量得到q、k、v向量
    在这里插入图片描述
  2. 用每个q向量乘所有的k向量得到对应项的attention,即用每项的query向量去匹配所有的key向量,得到该项对所有项的注意力打分。可以用矩阵优化运算。激活函数softmax可以用relu等替换。
    在这里插入图片描述
  3. 用q、v的相乘的结果乘v得到self-attention的输出b
    在这里插入图片描述
  4. 综上,如下图
    在这里插入图片描述

Multi-head self-attention

  1. 通过多组q、k、v来表示不同的相关性
    在这里插入图片描述
  2. 将多头的输出融合到一起
    在这里插入图片描述
  3. 位置编码,将位置信息编码为向量(每个位置一个专属向量),加到输入中即可
    在这里插入图片描述

用self-attention解决其他问题

  1. 语音解析:输入维度过大,使用truncated self-attention
    在这里插入图片描述
  2. 图像处理:每个像素(三个通道)可以看作一个三维向量,如下图可以将50个三维向量作为输入
    在这里插入图片描述
    在这里插入图片描述
  3. self-attention vs cnn:cnn相当于简化版的self-attention,卷积核的运算相当于对卷积核区域内的像素点求k、v,self-attention的感受野是自己学习的,而cnn的卷积核是手动设置的

在这里插入图片描述
cnn就是self-attention的特例。self-attention更灵活,但是如果训练集小可能更容易过拟。
在这里插入图片描述
在这里插入图片描述
4. self-attention vs RNN
在这里插入图片描述
5. self-attention for Graph:用attention来表示nodes之间的关联
在这里插入图片描述

相关文章:

Transformer学习-self-attention

这里写自定义目录标题 Self-attentionMulti-head self-attention用self-attention解决其他问题 Self-attention 用Wq、Wk、Wv分别乘输入向量得到q、k、v向量 用每个q向量乘所有的k向量得到对应项的attention,即用每项的query向量去匹配所有的key向量,得…...

Spring Boot:利用JPA进行数据库的增改

目录 JPA介绍Service接口Service和Autowired示例代码 Dao数据库操作层Repository示例代码 控制器文件示例代码-增加增加成功示例代码-修改修改成功 JPA介绍 JPA(Javaa Persistence API)一种用于持久化 Java 对象到关系型数据库的标准规范。它提供了一种统一的方式来…...

列表的增删改查和遍历

任务概念 什么是任务 任务是一个参数为指针,无法返回的函数,函数体为死循环不能返回任务的实现过程 每个任务是独立的,需要为任务分别分配栈称为任务栈,通常是预定义的全局数组,也可以是动态分配的一段内存空间&#…...

获取网卡上的IP、网关及DNS信息,获取最佳路由,遍历路由表中的条目(附源码)

VC常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...&a…...

保姆级 -- Zookeeper超详解

1. Zookeeper 是什么(了解) Zookeeper 是一个 分布式协调服务 的开源框架, 主要用来解决分布式集群中应用系统的一致性问题, 例如怎样避免同时操作同一数据造成脏读的问题. ZooKeeper 本质上是 一个分布式的小文件存储系统 . 提供基于类似于文件系统的目录树方式的数据存储, …...

【通意千问】大模型GitHub开源工程学习笔记(2)--使用Qwen进行推理的示例代码解析,及transformers的库使用

使用Transformers来使用模型 如希望使用Qwen-chat进行推理,所需要写的只是如下所示的数行代码。请确保你使用的是最新代码,并指定正确的模型名称和路径,如Qwen/Qwen-7B-Chat和Qwen/Qwen-14B-Chat 这里给出了一段代码 from transformers import AutoModelForCausalLM, Aut…...

从0开始python学习-23.selenium 常见鼠标的操作

注意:必须创建一个事件链对象(ActionChains);最后鼠标事件链完成之后一定要进行事务提交perform()(如果事件链不提交那么所有的鼠标事件都不会执行) 1. 左键单击:click()…...

电气基础——电源、变压器、接触器、断路器、线缆

目录 1.电源 2.变压器 三项电和2相电的转换 3.接触器 4.断路器 5.线缆 1.电源 2.变压器 三项电和2相电的转换 三相电转为2相电 1.变压器 2.相位移转换器 3.电容器 两相电变不了三相电。但是两相电可以通过电容移相后带动三相电机 零线,地线N&#xff…...

步力宝科技爆款产品定位,开创智能物联网新商业

数据显示,中国处于 “亚健康”状态人口数量约占总人口的70%,亚健康是一种临界状态,指介于健康和疾病之间的状态。亚健康是一个动态演变的过程,既有向慢病发展的趋势,也能通过合理的干预使人体重返健康状态,…...

凉鞋的 Unity 笔记 105. 第一个通识:编辑-测试 循环

105. 第一个通识:编辑-测试 循环 在这一篇,我们简单聊聊此教程中所涉及的一个非常重要的概念:循环。 我们在做任何事情都离不开某种循环,比如每天的 24 小时循环,一日三餐循环,清醒-睡觉循环。 在学习一…...

Bug:elementUI样式不起作用、Vue引入组件报错not found等(Vue+ElementUI问题汇总)

前端问题合集:VueElementUI 1. Vue引用Element-UI时,组件无效果解决方案 前提: 已经安装好elementUI依赖 //安装依赖 npm install element-ui //main.js中导入依赖并在全局中使用 import ElementUI from element-ui Vue.use(ElementUI)如果此…...

【大麦小米学量化】使用文心一言AI编写股票量化交易策略代码(含演示代码和进阶演示)

文章目录 AI是个宝前言一、文心一言是什么?二、让AI根据策略写出代码1. 策略提示词2. AI给出的策略代码及说明 三、进阶调试总结 AI是个宝 小米听说百度开放了文心一言AI,好奇的跑去问大麦:“文心一言都放开了,什么代码都可以写&a…...

软考 系统架构设计师系列知识点之软件架构风格(1)

这个十一注定是一个不能放松、保持“紧”的十一。由于报名了全国计算机技术与软件专业技术资格(水平)考试,11月4号就要考试,因此8天长假绝不能荒废,必须要好好利用起来。现在将各个核心知识点一一进行提炼并做记录。 所…...

轮询与中断

中断控制器 #include"exynos_4412.h"int main() {/*产生一个中断信号*//*1.属于外设层次&#xff0c;让外部的硬件控制器能产生一个中断信号并发送给中断控制器*//*将GPX1_1设置成中断功能*/GPX1.CON GPX1.CON |( 0xF << 4);/*设置GPX1_1中断的触发方式---下降…...

使用docker完成minio服务部署扩容备份迁移生产实践文档

一、minio服务扩容方案 当服务器存储空间不足的时候&#xff0c;需要进行扩容&#xff0c;扩容过程中需要短暂停机时间&#xff0c;预计在一小时内能够完成和恢复 统一注意事项 强烈建议为部署中的所有节点选择基本相似的硬件配置。确保硬件&#xff08;CPU、内存、主板、存…...

管道-有名管道

一、有名管道 有名管道与匿名管道的不同&#xff1a; 有名管道提供了一个路径名&#xff0c;并以FIFO的文件形式存在于文件系统中。与匿名管道不同&#xff0c;有名管道可以被不相关的进程使用&#xff0c;只要它们可以访问该路径&#xff0c;就能够通过有名管道进行通信。 FI…...

谷歌注册手机号码无法验证

1. 打开设置,在语言中点击添加语言搜索English并添加 2. 点击添加后把首选语言换成英语 3. 然后重启浏览器&#xff0c;这时候浏览器就是英文了&#xff0c;最后打开注册页面就能接收短信了...

C语言编译与链接过程详解

C语言编译与链接过程详解 源文件 main.c #include <stdio.h>extern int data; extern int add(int a,int b);int a1; int a2 0; int a3 10;static int b1; static int b2 0; static int b3 20;int main() {int c1;int c2 0;int c3 30;static int d1;static int …...

Qt信号和槽 定时器

文章目录 1 信号和槽1.1 信号和槽的概念1.2 信号和槽的应用1.3 信号和槽的连接1.4 信号和槽的特性1.5 生活中的类似例子1.6 信号和槽的优势 2 信号和槽的使用2.1 控件的信号和槽2.2 自定义信号和槽2.3 信号和槽的参数传递 3 定时器3.1 QTimer类的基本使用3.2 QTimer类的成员函数…...

zemax对称式目镜

两个几乎对称的双胶合透镜相对放置&#xff0c;可以达到25度的半视场 为了加工方便&#xff0c;这两个透镜组采用相同的结构 对称式目镜要求各组透镜自行校正色差&#xff0c;这样倍率色差也随之而校正。 它还能校正两种像差&#xff0c;慧差和象散。 对称目镜的结构更紧&…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...