【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]
此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。
runtime.images.initOpenCvIfNeeded();
importClass(java.util.ArrayList);
importClass(java.util.List);
importClass(java.util.LinkedList);
importClass(org.opencv.imgproc.Imgproc);
importClass(org.opencv.imgcodecs.Imgcodecs);
importClass(org.opencv.core.Core);
importClass(org.opencv.core.Mat);
importClass(org.opencv.core.MatOfDMatch);
importClass(org.opencv.core.MatOfKeyPoint);
importClass(org.opencv.core.MatOfRect);
importClass(org.opencv.core.Size);
importClass(org.opencv.features2d.DescriptorMatcher);
importClass(org.opencv.features2d.Features2d);
importClass(org.opencv.features2d.SIFT);
importClass(org.opencv.features2d.ORB);
importClass(org.opencv.features2d.BRISK);
importClass(org.opencv.features2d.AKAZE);
importClass(org.opencv.features2d.BFMatcher);
importClass(org.opencv.core.MatOfPoint2f);
importClass(org.opencv.calib3d.Calib3d);
importClass(org.opencv.core.CvType);
importClass(org.opencv.core.Point);
importClass(org.opencv.core.Scalar);
importClass(org.opencv.core.MatOfByte);/** 用法示例:* var image1 = captureScreen();* var image2 = images.read('xxxx');* match(image1, image2);*/function match(img1, img2, method) {console.time("匹配耗时");// 指定特征点算法SIFTvar match_alg = null;if(method == 'sift') {match_alg = SIFT.create();}else if(method == 'orb') {match_alg = ORB.create();}else if(method == 'brisk') {match_alg = BRISK.create();}else {match_alg = AKAZE.create();}var bigTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img1)), Imgcodecs.IMREAD_UNCHANGED);var smallTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img2)), Imgcodecs.IMREAD_UNCHANGED);// 转灰度图// console.log("转灰度图");var big_trainImage_gray = new Mat(bigTrainImage.rows(), bigTrainImage.cols(), CvType.CV_8UC1);var small_trainImage_gray = new Mat(smallTrainImage.rows(), smallTrainImage.cols(), CvType.CV_8UC1);Imgproc.cvtColor(bigTrainImage, big_trainImage_gray, Imgproc.COLOR_BGR2GRAY);Imgproc.cvtColor(smallTrainImage, small_trainImage_gray, Imgproc.COLOR_BGR2GRAY);// 获取图片的特征点// console.log("detect");var big_keyPoints = new MatOfKeyPoint();var small_keyPoints = new MatOfKeyPoint();match_alg.detect(bigTrainImage, big_keyPoints);match_alg.detect(smallTrainImage, small_keyPoints);// 提取图片的特征点// console.log("compute");var big_trainDescription = new Mat(big_keyPoints.rows(), 128, CvType.CV_32FC1);var small_trainDescription = new Mat(small_keyPoints.rows(), 128, CvType.CV_32FC1);match_alg.compute(big_trainImage_gray, big_keyPoints, big_trainDescription);match_alg.compute(small_trainImage_gray, small_keyPoints, small_trainDescription);// console.log("matcher.train");var matcher = new BFMatcher();matcher.clear();var train_desc_collection = new ArrayList();train_desc_collection.add(big_trainDescription);// vector<Mat>train_desc_collection(1, trainDescription);matcher.add(train_desc_collection);matcher.train();// console.log("knnMatch");var matches = new ArrayList();matcher.knnMatch(small_trainDescription, matches, 2);//对匹配结果进行筛选,依据distance进行筛选// console.log("对匹配结果进行筛选");var goodMatches = new ArrayList();var nndrRatio = 0.8;var len = matches.size();for (var i = 0; i < len; i++) {var matchObj = matches.get(i);var dmatcharray = matchObj.toArray();var m1 = dmatcharray[0];var m2 = dmatcharray[1];if (m1.distance <= m2.distance * nndrRatio) {goodMatches.add(m1);}}var matchesPointCount = goodMatches.size();//当匹配后的特征点大于等于 4 个,则认为模板图在原图中,该值可以自行调整if (matchesPointCount >= 4) {log("模板图在原图匹配成功!");var templateKeyPoints = small_keyPoints;var originalKeyPoints = big_keyPoints;var templateKeyPointList = templateKeyPoints.toList();var originalKeyPointList = originalKeyPoints.toList();var objectPoints = new LinkedList();var scenePoints = new LinkedList();var goodMatchesList = goodMatches;var len = goodMatches.size();for (var i = 0; i < len; i++) {var goodMatch = goodMatches.get(i);objectPoints.addLast(templateKeyPointList.get(goodMatch.queryIdx).pt);scenePoints.addLast(originalKeyPointList.get(goodMatch.trainIdx).pt);}var objMatOfPoint2f = new MatOfPoint2f();objMatOfPoint2f.fromList(objectPoints);var scnMatOfPoint2f = new MatOfPoint2f();scnMatOfPoint2f.fromList(scenePoints);//使用 findHomography 寻找匹配上的关键点的变换var homography = Calib3d.findHomography(objMatOfPoint2f, scnMatOfPoint2f, Calib3d.RANSAC, 3);/*** 透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。*/var templateCorners = new Mat(4, 1, CvType.CV_32FC2);var templateTransformResult = new Mat(4, 1, CvType.CV_32FC2);var templateImage = smallTrainImage;var doubleArr = util.java.array("double", 2);doubleArr[0] = 0;doubleArr[1] = 0;templateCorners.put(0, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = 0;templateCorners.put(1, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = templateImage.rows();templateCorners.put(2, 0, doubleArr);doubleArr[0] = 0;doubleArr[1] = templateImage.rows();templateCorners.put(3, 0, doubleArr);//使用 perspectiveTransform 将模板图进行透视变以矫正图象得到标准图片Core.perspectiveTransform(templateCorners, templateTransformResult, homography);//矩形四个顶点var pointA = templateTransformResult.get(0, 0);var pointB = templateTransformResult.get(1, 0);var pointC = templateTransformResult.get(2, 0);var pointD = templateTransformResult.get(3, 0);var y0 = Math.round(pointA[1])>0?Math.round(pointA[1]):0;var y1 = Math.round(pointC[1])>0?Math.round(pointC[1]):0;var x0 = Math.round(pointD[0])>0?Math.round(pointD[0]):0;var x1 = Math.round(pointB[0])>0?Math.round(pointB[0]):0;console.timeEnd("匹配耗时");return {x: x0, y: y0};} else {console.timeEnd("匹配耗时");log("模板图不在原图中!");return null;}
}相关文章:
【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。 runtime.images.initOpenCvIfNeeded(); importClass(java.uti…...
[庆国庆 迎国庆 发文]云计算的概念
庆国庆 迎国庆 国庆发文100%可得专属勋章 一年仅有一次哦 不要错过啦 去发布 https://activity.csdn.net/creatActivity?id10567&spm1011.2480.3001.6900 https://mp.csdn.net/edit?activity_id10567&spm1057.2600.3001.9674 云计算(cloud computing&…...
计算机网络-计算机网络体系结构-概述,模型
目录 一、计算机网络概述 二、性能指标 速率 带宽 吞吐量 时延 往返时延RTT 利用率 三、计算机网络体系结构 分层结构 IOS模型 应用层-> 表示层-> 会话层-> 传输层-> 网络层-> 数据链路层-> 物理层-> TCP/IP模型 一、计算机网络概述 计…...
对示例程序spinner_asyncio.py进行修改使其能运行
学习《流畅的python》第18章 使用asyncio包处理并发,运行示例18-2 spinner_asyncio.py的时候,程序报错如下: D:\fluentPy\chapter17>python spinner_asyncio.py File "D:\fluentPy\chapter17\spinner_asyncio.py", line 30 …...
Linux命令(93)之head
linux命令之head 1.head介绍 linux命令head用来查看文件的前N行内容;默认head查看前10行 2.head用法 head [参数] 文件 head常用参数 参数说明-n从头显示N行,默认显示10行,可以不写-q隐藏文件名,在查看两个及以上文件名的情况…...
使用Visual Studio调试排查Windows系统程序audiodg.exe频繁弹出报错
VC常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...&a…...
WebSocket实战之六心跳重连机制
一、前言 WebSocket应用部署到生产环境,我们除了会碰到因为经过代理服务器无法连接的问题(注:该问题可以通过搭建WSS来解决,具体配置请看 WebSocket实战之四WSS配置 ),另外一个问题就是外网环境不稳定经常…...
Webpack 基础入门以及接入 CSS、Typescript、Babel
一、什么是 Webpack Webpack 是一款 JS 模块化开发的技术框架,其运作原理是将多个 JS 文件关联起来构成可运行的应用程序。 Webpack 拥有丰富的 plugins / loaders 插件生态圈,可以让 js 识别不同的语言如 .css, .scss, .sass, .json, .xml, .ts, .vue…...
postgresql-自增字段
postgresql-自增字段 标识列IdentitySerial类型Sequence序列 标识列Identity -- 测试表 create table t_user( -- 标识列自增字段user_id integer generated always as identity primary key,user_name varchar(50) not null unique );-- 自动生成序列 CREATE SEQUENCE public…...
SpringBoot中使用Servlet和Filter
为什么要把Servlet和Filter写在一起,因为使用方式很相似 两种方式 第一种,使用Servlet和Filter 使用Servlet 继承HttpServlet 注册Servlet 使用Filter 1.自定义过滤器 2.注册过滤器 这里注意一点 使用/**无效 至少我这2.4.5版本是这样 过滤所有请求用/* 那么其实还有…...
Monkey命令
shell, monkey, system, Android, 文件系统Monkey, 示例, 简介 一、Monkey测试简介 Monkey测试是Android平台自动化测试的一种手段,通过Monkey程序模拟用户触摸屏幕、滑动Trackball、按键等操作来对设备上的程序进行压 力测试,检测程序多久的时间会发生…...
力扣 -- 279. 完全平方数(完全背包问题)
解题步骤: 参考代码: 未优化代码: class Solution { public:int numSquares(int n) {const int INF0x3f3f3f3f;int msqrt(n);//多开一行,多开一列vector<vector<int>> dp(m1,vector<int>(n1));//初始化第一行…...
在将对象 => JSON格式时,无法序列化部分属性
问题现象: 在ssm项目中,一个controller返回Msg对象(自定义对象,包含三个属性,int code;String msg;HashMap map;同时这三个属性都有对应的get和set方法),我的map属性里面…...
用python表格初级尝试
Excel,我的野心 当我输入3,2 就表示在第3行第2列。的单元格输入数据input输入表头 (input内除了/,空格 回车 标点符号等 全部作为单元格分隔符)由我设置input输入的是行or列 给选项 1. 行 2. 列默认回车或没输入值是列由我设置起…...
【单片机】16-LCD1602和12864显示器
1.LCD显示器相关背景 1.LCD简介 (1)显示器,常见显示器:电视,电脑 (2)LCD(Liquid Crystal Display),液晶显示器,原理介绍 (3ÿ…...
AUTOSAR从入门到精通-基于 CAN 总线的汽车发电机智能调节器(下)
目录 4.4.3 CAN 通信软件实现 汽车发电机智能调节器试验与结果分析 5.1 试验方案设计...
Windows下Tensorflow docker python开发环境搭建
前置条件 windows10 更新到较新的版本,硬件支持Hyper-V。 参考:https://learn.microsoft.com/zh-cn/windows/wsl/install 启用WSL 在Powershell中输入如下指令: dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsys…...
idea常用快捷键 idea搜索快捷键
常用快捷键 IntelliJ IDEA 是一款流行的 Java 集成开发环境(IDE),有许多常用的快捷键可以帮助开发者提高效率。以下是一些常用的 IntelliJ IDEA 快捷键: CtrlSpace:基本代码补全,用于输入任何东西&#x…...
Redis Cluster Gossip Protocol: MEET
返回目录 CLUSTER MEET 过程说明 #mermaid-svg-dp95n6LRjBO1mCKE {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-dp95n6LRjBO1mCKE .error-icon{fill:#552222;}#mermaid-svg-dp95n6LRjBO1mCKE .error-text{fill:#…...
TcpConnection的读写操作【深度剖析】
文章目录 前言一、TcpConnection的读二、TcpConnection的写三、TcpConnection的关闭 前言 今天总结TcpConnection类的读写事件。 一、TcpConnection的读 当Poller检测到套接字的Channel处于可读状态时,会调用Channel的回调函数,回调函数中根据不同激活…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
