整理了197个经典SOTA模型,涵盖图像分类、目标检测、推荐系统等13个方向
今天来帮大家回顾一下计算机视觉、自然语言处理等热门研究领域的197个经典SOTA模型,涵盖了图像分类、图像生成、文本分类、强化学习、目标检测、推荐系统、语音识别等13个细分方向。建议大家收藏了慢慢看,下一篇顶会的idea这就来了~
由于整理的SOTA模型有点多,这里只做简单分享,全部论文以及项目源码看文末
一、图像分类SOTA模型(15个)
1.模型:AlexNet
论文题目:Imagenet Classification with Deep Convolution Neural Network
2.模型:VGG
论文题目:Very Deep Convolutional Networks for Large-Scale Image Recognition
3.模型:GoogleNet
论文题目:Going Deeper with Convolutions
4.模型:ResNet
论文题目:Deep Residual Learning for Image Recognition
5.模型:ResNeXt
论文题目:Aggregated Residual Transformations for Deep Neural Networks
6.模型:DenseNet
论文题目:Densely Connected Convolutional Networks
7.模型:MobileNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
8.模型:SENet
论文题目:Squeeze-and-Excitation Networks
9.模型:DPN
论文题目:Dual Path Networks
10.模型:IGC V1
论文题目:Interleaved Group Convolutions for Deep Neural Networks
11.模型:Residual Attention Network
论文题目:Residual Attention Network for Image Classification
12.模型:ShuffleNet
论文题目:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
13.模型:MnasNet
论文题目:MnasNet: Platform-Aware Neural Architecture Search for Mobile
14.模型:EfficientNet
论文题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
15.模型:NFNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applic
二、文本分类SOTA模型(12个)
1.模型:RAE
论文题目:Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
2.模型:DAN
论文题目:Deep Unordered Composition Rivals Syntactic Methods for Text Classification
3.模型:TextRCNN
论文题目:Recurrent Convolutional Neural Networks for Text Classification
4.模型:Multi-task
论文题目:Recurrent Neural Network for Text Classification with Multi-Task Learning
5.模型:DeepMoji
论文题目:Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
6.模型:RNN-Capsule
论文题目:Investigating Capsule Networks with Dynamic Routing for Text Classification
7.模型:TextCNN
论文题目:Convolutional neural networks for sentence classification
8.模型:DCNN
论文题目:A convolutional neural network for modelling sentences
9.模型:XML-CNN
论文题目:Deep learning for extreme multi-label text classification
10.模型:TextCapsule
论文题目:Investigating capsule networks with dynamic routing for text classification
11.模型:Bao et al.
论文题目:Few-shot Text Classification with Distributional Signatures
12.模型:AttentionXML
论文题目:AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification
三、文本摘要SOTA模型(17个)
1.模型:CopyNet
论文题目:Incorporating Copying Mechanism in Sequence-to-Sequence Learning
2.模型:SummaRuNNer
论文题目:SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
3.模型:SeqGAN
论文题目:SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
4.模型:Latent Extractive
论文题目:Neural latent extractive document summarization
5.模型:NEUSUM
论文题目:Neural Document Summarization by Jointly Learning to Score and Select Sentences
6.模型:BERTSUM
论文题目:Text Summarization with Pretrained Encoders
7.模型:BRIO
论文题目:BRIO: Bringing Order to Abstractive Summarization
8.模型:NAM
论文题目:A Neural Attention Model for Abstractive Sentence Summarization
9.模型:RAS
论文题目:Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
10.模型:PGN
论文题目:Get To The Point: Summarization with Pointer-Generator Networks
11.模型:Re3Sum
论文题目:Retrieve, rerank and rewrite: Soft template based neural summarization
12.模型:MTLSum
论文题目:Soft Layer-Specific Multi-Task Summarization with Entailment and Question Generation
13.模型:KGSum
论文题目:Mind The Facts: Knowledge-Boosted Coherent Abstractive Text Summarization
14.模型:PEGASUS
论文题目:PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
15.模型:FASum
论文题目:Enhancing Factual Consistency of Abstractive Summarization
16.模型:RNN(ext) + ABS + RL + Rerank
论文题目:Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting
17.模型:BottleSUM
论文题目:BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle
四、图像生成SOTA模型(16个)
-
Progressive Growing of GANs for Improved Quality, Stability, and Variation
-
A Style-Based Generator Architecture for Generative Adversarial Networks
-
Analyzing and Improving the Image Quality of StyleGAN
-
Alias-Free Generative Adversarial Networks
-
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
-
A Contrastive Learning Approach for Training Variational Autoencoder Priors
-
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
-
Diffusion-GAN: Training GANs with Diffusion
-
Improved Training of Wasserstein GANs
-
Self-Attention Generative Adversarial Networks
-
Large Scale GAN Training for High Fidelity Natural Image Synthesis
-
CSGAN: Cyclic-Synthesized Generative Adversarial Networks for Image-to-Image Transformation
-
LOGAN: Latent Optimisation for Generative Adversarial Networks
-
A U-Net Based Discriminator for Generative Adversarial Networks
-
Instance-Conditioned GAN
-
Conditional GANs with Auxiliary Discriminative Classifier
五、视频生成SOTA模型(15个)
-
Temporal Generative Adversarial Nets with Singular Value Clipping
-
Generating Videos with Scene Dynamics
-
MoCoGAN: Decomposing Motion and Content for Video Generation
-
Stochastic Video Generation with a Learned Prior
-
Video-to-Video Synthesis
-
Probabilistic Video Generation using Holistic Attribute Control
-
ADVERSARIAL VIDEO GENERATION ON COMPLEX DATASETS
-
Sliced Wasserstein Generative Models
-
Train Sparsely, Generate Densely: Memory-efficient Unsupervised Training of High-resolution Temporal GAN
-
Latent Neural Differential Equations for Video Generation
-
VideoGPT: Video Generation using VQ-VAE and Transformers
-
Diverse Video Generation using a Gaussian Process Trigger
-
NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion
-
StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and Perks of StyleGAN2
-
Video Diffusion Models
六、强化学习SOTA模型(13个)
-
Playing Atari with Deep Reinforcement Learning
-
Deep Reinforcement Learning with Double Q-learning
-
Continuous control with deep reinforcement learning
-
Asynchronous Methods for Deep Reinforcement Learning
-
Proximal Policy Optimization Algorithms
-
Hindsight Experience Replay
-
Emergence of Locomotion Behaviours in Rich Environments
-
ImplicitQuantile Networks for Distributional Reinforcement Learning
-
Imagination-Augmented Agents for Deep Reinforcement Learning
-
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
-
Model-based value estimation for efficient model-free reinforcement learning
-
Model-ensemble trust-region policy optimization
-
Dynamic Horizon Value Estimation for Model-based Reinforcement Learning
七、语音合成SOTA模型(19个)
-
TTS Synthesis with Bidirectional LSTM based Recurrent Neural Networks
-
WaveNet: A Generative Model for Raw Audio
-
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
-
Char2Wav: End-to-end speech synthesis
-
Deep Voice: Real-time Neural Text-to-Speech
-
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
-
Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under A Multi-task Learning Framework
-
Tacotron: Towards End-to-End Speech Synthesis
-
VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop
-
Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
-
Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis
-
Deep Voice 3: Scaling text-to-speech with convolutional sequence learning
-
ClariNet Parallel Wave Generation in End-to-End Text-to-Speech
-
LPCNET: IMPROVING NEURAL SPEECH SYNTHESIS THROUGH LINEAR PREDICTION
-
Neural Speech Synthesis with Transformer Network
-
Glow-TTS:A Generative Flow for Text-to-Speech via Monotonic Alignment Search
-
FLOW-TTS: A NON-AUTOREGRESSIVE NETWORK FOR TEXT TO SPEECH BASED ON FLOW
-
Conditional variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
-
PnG BERT: Augmented BERT on Phonemes and Graphemes for Neural TTS
八、机器翻译SOTA模型(18个)
-
Neural machine translation by jointly learning to align and translate
-
Multi-task Learning for Multiple Language Translation
-
Effective Approaches to Attention-based Neural Machine Translation
-
A Convolutional Encoder Model for Neural Machine Translation
-
Attention is All You Need
-
Decoding with Value Networks for Neural Machine Translation
-
Unsupervised Neural Machine Translation
-
Phrase-based & Neural Unsupervised Machine Translation
-
Addressing the Under-translation Problem from the Entropy Perspective
-
Modeling Coherence for Discourse Neural Machine Translation
-
Cross-lingual Language Model Pretraining
-
MASS: Masked Sequence to Sequence Pre-training for Language Generation
-
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
-
Multilingual Denoising Pre-training for Neural Machine Translation
-
Incorporating BERT into Neural Machine Translation
-
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information
-
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation
-
Universal Conditional Masked Language Pre-training for Neural Machine Translation
九、文本生成SOTA模型(10个)
-
Sequence to sequence learning with neural networks
-
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
-
Neural machine translation by jointly learning to align and translate
-
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
-
Attention is all you need
-
Improving language understanding by generative pre-training
-
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
-
Cross-lingual Language Model Pretraining
-
Language Models are Unsupervised Multitask Learners
-
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
十、语音识别SOTA模型(12个)
-
A Neural Probabilistic Language Model
-
Recurrent neural network based language model
-
Lstm neural networks for language modeling
-
Hybrid speech recognition with deep bidirectional lstm
-
Attention is all you need
-
Improving language understanding by generative pre- training
-
Bert: Pre-training of deep bidirectional transformers for language understanding
-
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
-
Lstm neural networks for language modeling
-
Feedforward sequential memory networks: A new structure to learn long-term dependency
-
Convolutional, long short-term memory, fully connected deep neural networks
-
Highway long short-term memory RNNs for distant speech recognition
十一、目标检测SOTA模型(16个)
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
-
Fast R-CNN
-
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
-
Training Region-based Object Detectors with Online Hard Example Mining
-
R-FCN: Object Detection via Region-based Fully Convolutional Networks
-
Mask R-CNN
-
You Only Look Once: Unified, Real-Time Object Detection
-
SSD: Single Shot Multibox Detector
-
Feature Pyramid Networks for Object Detection
-
Focal Loss for Dense Object Detection
-
Accurate Single Stage Detector Using Recurrent Rolling Convolution
-
CornerNet: Detecting Objects as Paired Keypoints
-
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
-
Fully Convolutional One-Stage Object Detection
-
ObjectBox: From Centers to Boxes for Anchor-Free Object Detection
十二、推荐系统SOTA模型(18个)
-
Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
-
Deep Neural Networks for YouTube Recommendations
-
Self-Attentive Sequential Recommendation
-
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
-
Learning Tree-based Deep Model for Recommender Systems
-
Multi-Interest Network with Dynamic Routing for Recommendation at Tmall
-
PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest
-
Eicient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation
-
Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation
-
Field-aware Factorization Machines for CTR Prediction
-
Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction
-
Product-based Neural Networks for User Response Prediction
-
Wide & Deep Learning for Recommender Systems
-
Deep & Cross Network for Ad Click Predictions
-
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
-
Deep Interest Network for Click-Through Rate Prediction
-
GateNet:Gating-Enhanced Deep Network for Click-Through Rate Prediction
-
Package Recommendation with Intra- and Inter-Package Attention Networks
十三、超分辨率分析SOTA模型(16个)
-
Image Super-Resolution Using Deep Convolutional Networks
-
Deeply-Recursive Convolutional Network for Image Super-Resolution
-
Accelerating the Super-Resolution Convolutional Neural Network
-
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
-
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
-
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections
-
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
-
Image super-resolution via deep recursive residual network
-
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
-
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
-
Image Super-Resolution via Dual-State Recurrent Networks
-
Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
-
Cascade Convolutional Neural Network for Image Super-Resolution
-
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
-
Single Image Super-Resolution via a Holistic Attention Network
-
One-to-many Approach for Improving Super-Resolution
关注下方《学姐带你玩AI》🚀🚀🚀
回复“SOTA模型”获取论文+代码合集
码字不易,欢迎大家点赞评论收藏!
相关文章:
整理了197个经典SOTA模型,涵盖图像分类、目标检测、推荐系统等13个方向
今天来帮大家回顾一下计算机视觉、自然语言处理等热门研究领域的197个经典SOTA模型,涵盖了图像分类、图像生成、文本分类、强化学习、目标检测、推荐系统、语音识别等13个细分方向。建议大家收藏了慢慢看,下一篇顶会的idea这就来了~ 由于整理的SOTA模型…...

10.4 小任务
目录 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 .cpp文件 现象 TCP客户端 .h文件 .cpp文件 现象 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #includ…...

AJAX--Express速成
一、基本概念 1、AJAX(Asynchronous JavaScript And XML),即为异步的JavaScript 和 XML。 2、异步的JavaScript 它可以异步地向服务器发送请求,在等待响应的过程中,不会阻塞当前页面。浏览器可以做自己的事情。直到成功获取响应后…...
开题报告 PPT 应该怎么做
开题报告 PPT 应该怎么做 1、报告时首先汇报自己的姓名、单位、专业和导师。 2、研究背景(2-3张幻灯片) 简要阐明所选题目的研究目的及意义。 研究的目的,即研究应达到的目标,通过研究的背景加以说明(即你为什么要…...

JavaScript系列从入门到精通系列第十四篇:JavaScript中函数的简介以及函数的声明方式以及函数的调用
文章目录 一:函数的简介 1:概念和简介 2:创建一个函数对象 3:调用函数对象 4:函数对象的普通功能 5:使用函数声明来创建一个函数对象 6:使用函数声明创建一个匿名函数 一:函…...
当我们做后仿时我们究竟在仿些什么(三)
异步电路之间必须消除毛刺 之前提到过,数字电路后仿的一个主要目的就是动态验证异步电路时序。异步电路的时序是目前STA工具无法覆盖的。 例如异步复位的release是同步事件,其时序是可以靠STA保证的;但是reset是异步事件,它的时序…...

如何将超大文件压缩到最小
1、一个文件目录,查看属性发现这个文件达到了2.50GB; 2、右键此目录选择添加到压缩文件; 3、在弹出的窗口中将压缩文件格式选择为RAR4,压缩方式选择为最好,选择字典大小最大,勾选压缩选项中的创建固实压缩&…...
[C#]C#最简单方法获取GPU显存真实大小
你是否用下面代码获取GPU显存容量? using System.Management; private void getGpuMem() {ManagementClass c new ManagementClass("Win32_VideoController");foreach (ManagementObject o in c.GetInstances()){string gpuTotalMem String.For…...

【数据结构】红黑树(C++实现)
📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【数据…...
day-64 代码随想录算法训练营(19)图论 part 03
827.最大人工岛 思路一:深度优先遍历 1.深度优先遍历,求出所有岛屿的面积,并且把每个岛屿记上不同标记2.使用 unordered_map 使用键值对,标记:面积,记录岛屿面积3.遍历所有海面,然后进行一次广…...
xss测试步骤总结
文章目录 测试流程1.开启burp2.测试常规xss语句3.观察回显4.测试闭合与绕过Level2Level3Level4Level5Level6Level7 5.xss绕过方法1)测试需观察点2)无过滤法3)">闭合4)单引号闭合事件函数5)双引号闭合事件函数6)引号闭合链接7)大小写绕过8)多写绕过9)unicode编码10)unic…...

2023最新简易ChatGPT3.5小程序全开源源码+全新UI首发+实测可用可二开(带部署教程)
源码简介: 2023最新简易ChatGPT3.5小程序全开源源码全新UI首发,实测可以用,而且可以二次开发。这个是最新ChatGPT智能AI机器人微信小程序源码,同时也带部署教程。 这个全新版本的小界面设计相当漂亮,简单大方&#x…...

【Redis】数据过期策略和数据淘汰策略
数据过期策略和淘汰策略 过期策略 Redis所有的数据结构都可以设置过期时间,时间一到,就会自动删除。 问题:大家都知道,Redis是单线程的,如果同一时间太多key过期,Redis删除的时间也会占用线程的处理时间…...
RPA的优势和劣势是什么,RPA能力边界在哪里?
RPA,即Robotic Process Automation(机器人流程自动化),是一种新型的自动化技术,它可以通过软件机器人模拟人类在计算机上执行的操作,从而实现业务流程的自动化。RPA技术的出现,为企业提高效率、…...

Kubernetes 学习总结(38)—— Kubernetes 与云原生的联系
一、什么是云原生? 伴随着云计算的浪潮,云原生概念也应运而生,而且火得一塌糊涂,大家经常说云原生,却很少有人告诉你到底什么是云原生,云原生可以理解为“云”“原生”,Cloud 可以理解为应用程…...

号卡推广管理系统源码/手机流量卡推广网站源码/PHP源码+带后台版本+分销系统
源码简介: 号卡推广管理系统源码/手机流量卡推广网站源码,基于PHP源码,而且它是带后台版本,分销系统。运用全新UI流量卡官网系统源码有后台带文章。 这个流量卡销售网站源码,PHP流量卡分销系统,它可以支持…...

【C语言】汉诺塔 —— 详解
一、介绍 汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大焚天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。 大焚天命令婆罗门把圆盘从下面开始按…...

【云备份】
文章目录 [toc] 1 :peach:云备份的认识:peach:1.1 :apple:功能了解:apple:1.2 :apple:实现目标:apple:1.3 :apple:服务端程序负责功能:apple:1.4 :apple:服务端功能模块划分:apple:1.5 :apple:客户端程序负责功能:apple:1.6 :apple:客户端功能模块划分:apple: 2 :peach:环境搭建…...
第四十六章 命名空间和数据库 - 系统提供的数据库
文章目录 第四十六章 命名空间和数据库 - 系统提供的数据库系统提供的数据库ENSLIBIRISAUDITIRISLIBIRISLOCALDATAIRISSYS (the system manager’s database 系统管理器的数据库)IRISTEMP 第四十六章 命名空间和数据库 - 系统提供的数据库 系统提供的数据库 IRIS 提供以下数据…...
【贪心的商人】python实现-附ChatGPT解析
1.题目 贪心的商人 知识点:贪心 时间限制:1s 空间限制: 256MB 限定语言:不限 题目描述: 商人经营一家店铺,有number种商品,由于仓库限制 每件商品的最大持有数量是item[index], 每种商品的价格在每天是item_price[item_index][day], 通过对商品的买进和卖出获取利润,请给…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...

vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能
vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能 查看官网:https://vxetable.cn 效果 代码 通过 checkbox-config.isShift 启用批量选中,启用后按住快捷键和鼠标批量选取 <template><div><vxe-grid v-bind"gri…...