整理了197个经典SOTA模型,涵盖图像分类、目标检测、推荐系统等13个方向
今天来帮大家回顾一下计算机视觉、自然语言处理等热门研究领域的197个经典SOTA模型,涵盖了图像分类、图像生成、文本分类、强化学习、目标检测、推荐系统、语音识别等13个细分方向。建议大家收藏了慢慢看,下一篇顶会的idea这就来了~
由于整理的SOTA模型有点多,这里只做简单分享,全部论文以及项目源码看文末
一、图像分类SOTA模型(15个)
1.模型:AlexNet
论文题目:Imagenet Classification with Deep Convolution Neural Network
2.模型:VGG
论文题目:Very Deep Convolutional Networks for Large-Scale Image Recognition
3.模型:GoogleNet
论文题目:Going Deeper with Convolutions
4.模型:ResNet
论文题目:Deep Residual Learning for Image Recognition
5.模型:ResNeXt
论文题目:Aggregated Residual Transformations for Deep Neural Networks
6.模型:DenseNet
论文题目:Densely Connected Convolutional Networks
7.模型:MobileNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
8.模型:SENet
论文题目:Squeeze-and-Excitation Networks
9.模型:DPN
论文题目:Dual Path Networks
10.模型:IGC V1
论文题目:Interleaved Group Convolutions for Deep Neural Networks
11.模型:Residual Attention Network
论文题目:Residual Attention Network for Image Classification
12.模型:ShuffleNet
论文题目:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
13.模型:MnasNet
论文题目:MnasNet: Platform-Aware Neural Architecture Search for Mobile
14.模型:EfficientNet
论文题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
15.模型:NFNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applic
二、文本分类SOTA模型(12个)
1.模型:RAE
论文题目:Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
2.模型:DAN
论文题目:Deep Unordered Composition Rivals Syntactic Methods for Text Classification
3.模型:TextRCNN
论文题目:Recurrent Convolutional Neural Networks for Text Classification
4.模型:Multi-task
论文题目:Recurrent Neural Network for Text Classification with Multi-Task Learning
5.模型:DeepMoji
论文题目:Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
6.模型:RNN-Capsule
论文题目:Investigating Capsule Networks with Dynamic Routing for Text Classification
7.模型:TextCNN
论文题目:Convolutional neural networks for sentence classification
8.模型:DCNN
论文题目:A convolutional neural network for modelling sentences
9.模型:XML-CNN
论文题目:Deep learning for extreme multi-label text classification
10.模型:TextCapsule
论文题目:Investigating capsule networks with dynamic routing for text classification
11.模型:Bao et al.
论文题目:Few-shot Text Classification with Distributional Signatures
12.模型:AttentionXML
论文题目:AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification
三、文本摘要SOTA模型(17个)
1.模型:CopyNet
论文题目:Incorporating Copying Mechanism in Sequence-to-Sequence Learning
2.模型:SummaRuNNer
论文题目:SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documen
3.模型:SeqGAN
论文题目:SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
4.模型:Latent Extractive
论文题目:Neural latent extractive document summarization
5.模型:NEUSUM
论文题目:Neural Document Summarization by Jointly Learning to Score and Select Sentences
6.模型:BERTSUM
论文题目:Text Summarization with Pretrained Encoders
7.模型:BRIO
论文题目:BRIO: Bringing Order to Abstractive Summarization
8.模型:NAM
论文题目:A Neural Attention Model for Abstractive Sentence Summarization
9.模型:RAS
论文题目:Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
10.模型:PGN
论文题目:Get To The Point: Summarization with Pointer-Generator Networks
11.模型:Re3Sum
论文题目:Retrieve, rerank and rewrite: Soft template based neural summarization
12.模型:MTLSum
论文题目:Soft Layer-Specific Multi-Task Summarization with Entailment and Question Generation
13.模型:KGSum
论文题目:Mind The Facts: Knowledge-Boosted Coherent Abstractive Text Summarization
14.模型:PEGASUS
论文题目:PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
15.模型:FASum
论文题目:Enhancing Factual Consistency of Abstractive Summarization
16.模型:RNN(ext) + ABS + RL + Rerank
论文题目:Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting
17.模型:BottleSUM
论文题目:BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle
四、图像生成SOTA模型(16个)
-  Progressive Growing of GANs for Improved Quality, Stability, and Variation 
-  A Style-Based Generator Architecture for Generative Adversarial Networks 
-  Analyzing and Improving the Image Quality of StyleGAN 
-  Alias-Free Generative Adversarial Networks 
-  Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images 
-  A Contrastive Learning Approach for Training Variational Autoencoder Priors 
-  StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets 
-  Diffusion-GAN: Training GANs with Diffusion 
-  Improved Training of Wasserstein GANs 
-  Self-Attention Generative Adversarial Networks 
-  Large Scale GAN Training for High Fidelity Natural Image Synthesis 
-  CSGAN: Cyclic-Synthesized Generative Adversarial Networks for Image-to-Image Transformation 
-  LOGAN: Latent Optimisation for Generative Adversarial Networks 
-  A U-Net Based Discriminator for Generative Adversarial Networks 
-  Instance-Conditioned GAN 
-  Conditional GANs with Auxiliary Discriminative Classifier 
五、视频生成SOTA模型(15个)
-  Temporal Generative Adversarial Nets with Singular Value Clipping 
-  Generating Videos with Scene Dynamics 
-  MoCoGAN: Decomposing Motion and Content for Video Generation 
-  Stochastic Video Generation with a Learned Prior 
-  Video-to-Video Synthesis 
-  Probabilistic Video Generation using Holistic Attribute Control 
-  ADVERSARIAL VIDEO GENERATION ON COMPLEX DATASETS 
-  Sliced Wasserstein Generative Models 
-  Train Sparsely, Generate Densely: Memory-efficient Unsupervised Training of High-resolution Temporal GAN 
-  Latent Neural Differential Equations for Video Generation 
-  VideoGPT: Video Generation using VQ-VAE and Transformers 
-  Diverse Video Generation using a Gaussian Process Trigger 
-  NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion 
-  StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and Perks of StyleGAN2 
-  Video Diffusion Models 
六、强化学习SOTA模型(13个)
-  Playing Atari with Deep Reinforcement Learning 
-  Deep Reinforcement Learning with Double Q-learning 
-  Continuous control with deep reinforcement learning 
-  Asynchronous Methods for Deep Reinforcement Learning 
-  Proximal Policy Optimization Algorithms 
-  Hindsight Experience Replay 
-  Emergence of Locomotion Behaviours in Rich Environments 
-  ImplicitQuantile Networks for Distributional Reinforcement Learning 
-  Imagination-Augmented Agents for Deep Reinforcement Learning 
-  Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning 
-  Model-based value estimation for efficient model-free reinforcement learning 
-  Model-ensemble trust-region policy optimization 
-  Dynamic Horizon Value Estimation for Model-based Reinforcement Learning 
七、语音合成SOTA模型(19个)
-  TTS Synthesis with Bidirectional LSTM based Recurrent Neural Networks 
-  WaveNet: A Generative Model for Raw Audio 
-  SampleRNN: An Unconditional End-to-End Neural Audio Generation Model 
-  Char2Wav: End-to-end speech synthesis 
-  Deep Voice: Real-time Neural Text-to-Speech 
-  Parallel WaveNet: Fast High-Fidelity Speech Synthesis 
-  Statistical Parametric Speech Synthesis Using Generative Adversarial Networks Under A Multi-task Learning Framework 
-  Tacotron: Towards End-to-End Speech Synthesis 
-  VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop 
-  Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions 
-  Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis 
-  Deep Voice 3: Scaling text-to-speech with convolutional sequence learning 
-  ClariNet Parallel Wave Generation in End-to-End Text-to-Speech 
-  LPCNET: IMPROVING NEURAL SPEECH SYNTHESIS THROUGH LINEAR PREDICTION 
-  Neural Speech Synthesis with Transformer Network 
-  Glow-TTS:A Generative Flow for Text-to-Speech via Monotonic Alignment Search 
-  FLOW-TTS: A NON-AUTOREGRESSIVE NETWORK FOR TEXT TO SPEECH BASED ON FLOW 
-  Conditional variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech 
-  PnG BERT: Augmented BERT on Phonemes and Graphemes for Neural TTS 
八、机器翻译SOTA模型(18个)
-  Neural machine translation by jointly learning to align and translate 
-  Multi-task Learning for Multiple Language Translation 
-  Effective Approaches to Attention-based Neural Machine Translation 
-  A Convolutional Encoder Model for Neural Machine Translation 
-  Attention is All You Need 
-  Decoding with Value Networks for Neural Machine Translation 
-  Unsupervised Neural Machine Translation 
-  Phrase-based & Neural Unsupervised Machine Translation 
-  Addressing the Under-translation Problem from the Entropy Perspective 
-  Modeling Coherence for Discourse Neural Machine Translation 
-  Cross-lingual Language Model Pretraining 
-  MASS: Masked Sequence to Sequence Pre-training for Language Generation 
-  FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow 
-  Multilingual Denoising Pre-training for Neural Machine Translation 
-  Incorporating BERT into Neural Machine Translation 
-  Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information 
-  Contrastive Learning for Many-to-many Multilingual Neural Machine Translation 
-  Universal Conditional Masked Language Pre-training for Neural Machine Translation 
九、文本生成SOTA模型(10个)
-  Sequence to sequence learning with neural networks 
-  Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation 
-  Neural machine translation by jointly learning to align and translate 
-  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient 
-  Attention is all you need 
-  Improving language understanding by generative pre-training 
-  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 
-  Cross-lingual Language Model Pretraining 
-  Language Models are Unsupervised Multitask Learners 
-  BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension 
十、语音识别SOTA模型(12个)
-  A Neural Probabilistic Language Model 
-  Recurrent neural network based language model 
-  Lstm neural networks for language modeling 
-  Hybrid speech recognition with deep bidirectional lstm 
-  Attention is all you need 
-  Improving language understanding by generative pre- training 
-  Bert: Pre-training of deep bidirectional transformers for language understanding 
-  Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context 
-  Lstm neural networks for language modeling 
-  Feedforward sequential memory networks: A new structure to learn long-term dependency 
-  Convolutional, long short-term memory, fully connected deep neural networks 
-  Highway long short-term memory RNNs for distant speech recognition 
十一、目标检测SOTA模型(16个)
-  Rich feature hierarchies for accurate object detection and semantic segmentation 
-  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 
-  Fast R-CNN 
-  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 
-  Training Region-based Object Detectors with Online Hard Example Mining 
-  R-FCN: Object Detection via Region-based Fully Convolutional Networks 
-  Mask R-CNN 
-  You Only Look Once: Unified, Real-Time Object Detection 
-  SSD: Single Shot Multibox Detector 
-  Feature Pyramid Networks for Object Detection 
-  Focal Loss for Dense Object Detection 
-  Accurate Single Stage Detector Using Recurrent Rolling Convolution 
-  CornerNet: Detecting Objects as Paired Keypoints 
-  M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network 
-  Fully Convolutional One-Stage Object Detection 
-  ObjectBox: From Centers to Boxes for Anchor-Free Object Detection 
十二、推荐系统SOTA模型(18个)
-  Learning Deep Structured Semantic Models for Web Search using Clickthrough Data 
-  Deep Neural Networks for YouTube Recommendations 
-  Self-Attentive Sequential Recommendation 
-  Graph Convolutional Neural Networks for Web-Scale Recommender Systems 
-  Learning Tree-based Deep Model for Recommender Systems 
-  Multi-Interest Network with Dynamic Routing for Recommendation at Tmall 
-  PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest 
-  Eicient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation 
-  Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation 
-  Field-aware Factorization Machines for CTR Prediction 
-  Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction 
-  Product-based Neural Networks for User Response Prediction 
-  Wide & Deep Learning for Recommender Systems 
-  Deep & Cross Network for Ad Click Predictions 
-  xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 
-  Deep Interest Network for Click-Through Rate Prediction 
-  GateNet:Gating-Enhanced Deep Network for Click-Through Rate Prediction 
-  Package Recommendation with Intra- and Inter-Package Attention Networks 
十三、超分辨率分析SOTA模型(16个)
-  Image Super-Resolution Using Deep Convolutional Networks 
-  Deeply-Recursive Convolutional Network for Image Super-Resolution 
-  Accelerating the Super-Resolution Convolutional Neural Network 
-  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network 
-  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 
-  Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections 
-  Accurate Image Super-Resolution Using Very Deep Convolutional Networks 
-  Image super-resolution via deep recursive residual network 
-  Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution 
-  Image Super-Resolution Using Very Deep Residual Channel Attention Networks 
-  Image Super-Resolution via Dual-State Recurrent Networks 
-  Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform 
-  Cascade Convolutional Neural Network for Image Super-Resolution 
-  Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining 
-  Single Image Super-Resolution via a Holistic Attention Network 
-  One-to-many Approach for Improving Super-Resolution 
关注下方《学姐带你玩AI》🚀🚀🚀
回复“SOTA模型”获取论文+代码合集
码字不易,欢迎大家点赞评论收藏!
相关文章:
整理了197个经典SOTA模型,涵盖图像分类、目标检测、推荐系统等13个方向
今天来帮大家回顾一下计算机视觉、自然语言处理等热门研究领域的197个经典SOTA模型,涵盖了图像分类、图像生成、文本分类、强化学习、目标检测、推荐系统、语音识别等13个细分方向。建议大家收藏了慢慢看,下一篇顶会的idea这就来了~ 由于整理的SOTA模型…...
 
10.4 小任务
目录 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 .cpp文件 现象 TCP客户端 .h文件 .cpp文件 现象 QT实现TCP服务器客户端搭建的代码,现象 TCP服务器 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #includ…...
 
AJAX--Express速成
一、基本概念 1、AJAX(Asynchronous JavaScript And XML),即为异步的JavaScript 和 XML。 2、异步的JavaScript 它可以异步地向服务器发送请求,在等待响应的过程中,不会阻塞当前页面。浏览器可以做自己的事情。直到成功获取响应后…...
开题报告 PPT 应该怎么做
开题报告 PPT 应该怎么做 1、报告时首先汇报自己的姓名、单位、专业和导师。 2、研究背景(2-3张幻灯片) 简要阐明所选题目的研究目的及意义。 研究的目的,即研究应达到的目标,通过研究的背景加以说明(即你为什么要…...
 
JavaScript系列从入门到精通系列第十四篇:JavaScript中函数的简介以及函数的声明方式以及函数的调用
文章目录 一:函数的简介 1:概念和简介 2:创建一个函数对象 3:调用函数对象 4:函数对象的普通功能 5:使用函数声明来创建一个函数对象 6:使用函数声明创建一个匿名函数 一:函…...
当我们做后仿时我们究竟在仿些什么(三)
异步电路之间必须消除毛刺 之前提到过,数字电路后仿的一个主要目的就是动态验证异步电路时序。异步电路的时序是目前STA工具无法覆盖的。 例如异步复位的release是同步事件,其时序是可以靠STA保证的;但是reset是异步事件,它的时序…...
 
如何将超大文件压缩到最小
1、一个文件目录,查看属性发现这个文件达到了2.50GB; 2、右键此目录选择添加到压缩文件; 3、在弹出的窗口中将压缩文件格式选择为RAR4,压缩方式选择为最好,选择字典大小最大,勾选压缩选项中的创建固实压缩&…...
[C#]C#最简单方法获取GPU显存真实大小
你是否用下面代码获取GPU显存容量? using System.Management; private void getGpuMem() {ManagementClass c new ManagementClass("Win32_VideoController");foreach (ManagementObject o in c.GetInstances()){string gpuTotalMem String.For…...
 
【数据结构】红黑树(C++实现)
 📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【数据…...
day-64 代码随想录算法训练营(19)图论 part 03
827.最大人工岛 思路一:深度优先遍历 1.深度优先遍历,求出所有岛屿的面积,并且把每个岛屿记上不同标记2.使用 unordered_map 使用键值对,标记:面积,记录岛屿面积3.遍历所有海面,然后进行一次广…...
xss测试步骤总结
文章目录 测试流程1.开启burp2.测试常规xss语句3.观察回显4.测试闭合与绕过Level2Level3Level4Level5Level6Level7 5.xss绕过方法1)测试需观察点2)无过滤法3)">闭合4)单引号闭合事件函数5)双引号闭合事件函数6)引号闭合链接7)大小写绕过8)多写绕过9)unicode编码10)unic…...
 
2023最新简易ChatGPT3.5小程序全开源源码+全新UI首发+实测可用可二开(带部署教程)
源码简介: 2023最新简易ChatGPT3.5小程序全开源源码全新UI首发,实测可以用,而且可以二次开发。这个是最新ChatGPT智能AI机器人微信小程序源码,同时也带部署教程。 这个全新版本的小界面设计相当漂亮,简单大方&#x…...
 
【Redis】数据过期策略和数据淘汰策略
数据过期策略和淘汰策略 过期策略 Redis所有的数据结构都可以设置过期时间,时间一到,就会自动删除。 问题:大家都知道,Redis是单线程的,如果同一时间太多key过期,Redis删除的时间也会占用线程的处理时间…...
RPA的优势和劣势是什么,RPA能力边界在哪里?
RPA,即Robotic Process Automation(机器人流程自动化),是一种新型的自动化技术,它可以通过软件机器人模拟人类在计算机上执行的操作,从而实现业务流程的自动化。RPA技术的出现,为企业提高效率、…...
 
Kubernetes 学习总结(38)—— Kubernetes 与云原生的联系
一、什么是云原生? 伴随着云计算的浪潮,云原生概念也应运而生,而且火得一塌糊涂,大家经常说云原生,却很少有人告诉你到底什么是云原生,云原生可以理解为“云”“原生”,Cloud 可以理解为应用程…...
 
号卡推广管理系统源码/手机流量卡推广网站源码/PHP源码+带后台版本+分销系统
源码简介: 号卡推广管理系统源码/手机流量卡推广网站源码,基于PHP源码,而且它是带后台版本,分销系统。运用全新UI流量卡官网系统源码有后台带文章。 这个流量卡销售网站源码,PHP流量卡分销系统,它可以支持…...
 
【C语言】汉诺塔 —— 详解
一、介绍 汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具。大焚天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。 大焚天命令婆罗门把圆盘从下面开始按…...
 
【云备份】
文章目录 [toc] 1 :peach:云备份的认识:peach:1.1 :apple:功能了解:apple:1.2 :apple:实现目标:apple:1.3 :apple:服务端程序负责功能:apple:1.4 :apple:服务端功能模块划分:apple:1.5 :apple:客户端程序负责功能:apple:1.6 :apple:客户端功能模块划分:apple: 2 :peach:环境搭建…...
第四十六章 命名空间和数据库 - 系统提供的数据库
文章目录 第四十六章 命名空间和数据库 - 系统提供的数据库系统提供的数据库ENSLIBIRISAUDITIRISLIBIRISLOCALDATAIRISSYS (the system manager’s database 系统管理器的数据库)IRISTEMP 第四十六章 命名空间和数据库 - 系统提供的数据库 系统提供的数据库 IRIS 提供以下数据…...
【贪心的商人】python实现-附ChatGPT解析
1.题目 贪心的商人 知识点:贪心 时间限制:1s 空间限制: 256MB 限定语言:不限 题目描述: 商人经营一家店铺,有number种商品,由于仓库限制 每件商品的最大持有数量是item[index], 每种商品的价格在每天是item_price[item_index][day], 通过对商品的买进和卖出获取利润,请给…...
 
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
 
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
 
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
 
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
 
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
 
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
