【图像处理OpenCV(C++版)】——4.6 限制对比度的自适应直方图均衡化
前言:
😊😊😊欢迎来到本博客😊😊😊
🌟🌟🌟 本专栏主要结合OpenCV和C++来实现一些基本的图像处理算法并详细解释各参数含义,适用于平时学习、工作快速查询等,随时更新。
😊😊😊 具体食用方式:可以点击本专栏【OpenCV快速查找(更新中)】–>搜索你要查询的算子名称或相关知识点,或者通过这篇博客👉通俗易懂OpenCV(C++版)详细教程——OpenCV函数快速查找(不断更新中)]查阅你想知道的知识,即可食用。
🎁🎁🎁支持:如果觉得博主的文章还不错或者您用得到的话,可以悄悄关注一下博主哈,如果三连收藏支持就更好啦!这就是给予我最大的支持!😙😙😙
文章目录
- 学习目标
- 一、概念及原理
- 1.1 相关概念及原理
- 二、 代码实现
- 三、 总结
学习目标
- 熟悉自适应直方图均衡化概念及原理
- C++实现自适应直方图均衡化案例
上一节介绍了更为方便的方法来自动调节图像对比度——全局直方图均衡化,但是原图中比较亮的区域,经过全局直方图均衡化处理后会出现了失真的情况,而且出现了明显的噪声。该如何处理呢?
一、概念及原理
1.1 相关概念及原理
关于自适应直方图均衡化步骤如下:
首先,将图像划分为不重叠的区域块;然后,对每一个块分别进行直方图均衡化。在没有噪声影响的情况下,每一个小区域的灰度直方图会被限制在一个小的灰度级范围内;但是如果有噪声,每一个分割的区域块执行直方图均衡化后,噪声会被放大。最后,为了避免出现噪声这种情况,利用“限制对比度(Contrast Limiting)”的方式,如果直方图的bin超过了提前预设好的“限制对比度”,那么会被裁减,然后将裁剪的部分均匀分布到其他的bin,这样就重构了直方图。
————————————————
小知识:灰度与彩色直方图bin的含义
1、计算颜色直方图时,横坐标是颜色空间,纵坐标是该颜色的像素点的数量。
2、对于RGB而言,每个通道都有0到255个灰度集,即一共256个。如果采用bins=1的思路,则有 256 x 256 x 256 个横坐标,并且横坐标对应的纵坐标的值也比较少(一个图中像素值相同的也不多)
3、为解决这种问题,采用了合并的思想,也就出现了bin。计算颜色直方图需要将颜色空间划分为若干个小的颜色区间。对于每个颜色通道(R,G,B),每32个划分到一个bin里面(具体一个bin中的区间为多少可以视情况而定)。排列组合后,有8 x 8 x 8 一共有512 bin ,也就是直方图的横坐标共512个刻度。
R:0到255 划分为 8个binG:0到255 划分为 8个binB:0到255 划分为 8个bin举个例子:假设一个像素的R,G,B,3个通道的取值分别为2,5,4,那么在bins下的坐标就应该为(1,1,1)。因为2相对于R通道来说属于第一个bins,后面的同理。
如下图所示,假设设置“限制对比度”为50,第3个bin所对应的像素个数大于50,然后将多出的将会均匀分布到每一个bin,重构后的直方图如图(右)所示,接下来利用重构后的直方图进行均衡化操作。
可以看到,此时的直方图又会整体上升了一个高度,但也有部分bin会超过我们设置的上限(如地5个bin)。当然,在实现的时候有很多解决方法,可以多重复几次裁剪过程,使得上升的部分变得微不足道,也可以用另一种常用的方法:
示例: 假设图中裁剪值为ClipLimit=50。
(1) 求出直方图中高于该值的部分的和TotalNum (图中只有一个bin超过ClipLimit,假设为82,即82-50=32);
(2) 假设将TotalNum均分给所有灰度级,直方图整体上升的高度L=TotalNum/N,即32/(256/16)=2;
(3) 同时以upper= ClipLimit-L为界限对直方图进行如下处理:
1) 若幅值高于ClipLimit,直接置为ClipLimit,即图中第5个bin;
2) 若幅值处于Upper和ClipLimit之间,将其填补至ClipLimit;
3) 若幅值低于Upper,直接填补L个像素点;
经过上述操作,用来填补的像素点个数通常会略小于TotalNum,还有一些剩余的像素点没分出去。可以再把这些点均匀地分给那些目前幅值仍然小于ClipLimit的灰度值。
二、 代码实现
关于OpenCV实现的限制对比度的自适应直方图均衡化函数,其实在OpenCV中并没有提及相关函数,提供了函数createCLAHE()来构建指向CLAHE对象的指针,其中默认设置“限制对比度(clipLimit=(40.0)),块的大小为8×8。
#include <iostream>
#include <opencv2/opencv.hpp>
# include <opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv ;int main() {Mat src = imread(D:/VSCodeFile/0penCV_CSDN/image/img3.jpg);//Mat src;if (src.empty() {cout<<“the image is empty!" <《< endl;//全局直方图均衡化Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);Mat dst;equalizeHist(gray, dst);//限制对比度的自适应直方图均衡化//构建CLAHE 对象Ptr<CLAHE> clahe = createCLAHE(2.0, Size(8, 8));Mat dst1;// 限制对比度的自适应直方图均衡化clahe->apply(gray, dst1);//图片显示imshow("原图", src);imshow("直方图均衡化演示", dst);imshow("对比度增强", dst1);waitKey (0) ;return 0;
}
结果显示了对原图进行全局直方图均衡化(HE)和限制对比度自适应直方图均衡化(CLAHE)的效果,仔细观察会发现原图中比较亮的区域,经过HE处理后出现了失真的情况(两个人体已经模糊),而且出现了明显的噪声,而CLAHE避免了这两种情况。

对比度增强只是图像增强方法中的一种手段,目前提到的对比度拉伸的方法受图像噪声的影响会很明显,在下一章内容开始介绍去除噪声的方法,去噪之后再使用对比度增强技术效果会更好。
三、 总结
最后,长话短说,大家看完就好好动手实践一下,切记不能三分钟热度、三天打鱼,两天晒网。OpenCV是学习图像处理理论知识比较好的一个途径,大家也可以自己尝试写写博客,来记录大家平时学习的进度,可以和网上众多学者一起交流、探讨,有什么问题希望大家可以积极评论交流,我也会及时更新,来督促自己学习进度。希望大家觉得不错的可以点赞、关注、收藏。
相关文章:
【图像处理OpenCV(C++版)】——4.6 限制对比度的自适应直方图均衡化
前言: 😊😊😊欢迎来到本博客😊😊😊 🌟🌟🌟 本专栏主要结合OpenCV和C来实现一些基本的图像处理算法并详细解释各参数含义,适用于平时学习、工作快…...
设计模式--工厂模式
这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。 工厂模式主要使用了C的多态特性。将存在继承关系的类&a…...
算法笔记(十三)—— 树形DP及Morris遍历
树形DP: Question1: 以X为头结点的树,最大距离: 1. X不参与,在左子树上的最大距离 2. X不参与,在右子树上的最大距离 3. X参与,左树上最远的结点通过X到右树最远的结点 最后的结果一定是三种情况的最大…...
【Classical Network】EfficientNetV2
原文地址 原文代码 pytorch实现1 pytorch实现2 详细讲解 文章目录EfficientNet中存在的问题NAS 搜索EfficientNetV2 网络结构codeEfficientNet中存在的问题 训练图像尺寸大时,训练速度非常慢。train size 512, batch 24时,V100 out of memory在网络浅…...
索引类型FULLTEXT、NORMAL、SPATIAL、UNIQUE的区别
SQL索引的创建及使用请移步另一篇文章 (188条消息) SQL索引的创建及使用_sql索引的建立与使用_t梧桐树t的博客-CSDN博客 索引的种类 NORMAL 表示普通索引,大多数情况下都可以使用 UNIQUE 表示唯一索引,不允许重复的索引,如果该字段信息…...
稳定、可控、高可用:运维最应该加持哪些技术 buff?
如何保障开发需求高效交付,系统高峰扛得住、长期平稳,是项目组中的每位技术人必须面对的问题。 本文大纲 1、强稳定性Buff 2、风控服务实时性Buff 3、高资源利用率Buff 1.强稳定性Buff 强稳定性背后有三大挑战,其一是应对发布变更引起故障问…...
动态网站开发讲课笔记02:Java Web概述
文章目录零、本讲学习目标一、 XML基础(一)XML概述1、XML2、XML与HTML的比较(二)XML语法1、XML文档的声明2、XML元素的定义3、XML属性的定义4、XML注释的定义5、XML文件示例(三)DTD约束1、什么是XML约束2、…...
如何保护 IP 地址的隐私问题
是不是只有运营商才能查到某个人的住址信息呢?在大数据时代的今天,各种互联网应用收集了大量的数据信息,它们其实也可以根据这些信息,推断出某个人的大致地址位置。例如百度地图会一直用 App SDK 以及网页的方式记录 IP 和地址位置…...
高并发系统设计之限流
本文已收录至Github,推荐阅读 👉 Java随想录 文章目录限流算法计数器算法滑动窗口漏桶算法令牌桶算法限流算法实现Guava RateLimiter实现限流令牌预分配预热限流Nginx 限流limit_connlimit_req黑白名单限流这篇文章来讲讲限流,在高并发系统中…...
ZCMU--5286: Rose的字符串(C语言)
Description 一天Rose同学想得到一个仅由01组成的字符串S,Jack同学为了让Rose同学开心,于是打算去商店购买另一个也仅由01组成的字符串T。而商店的字符串价格由它的长度决定,比如字符串011售价3元,001011售价6元,商店…...
MAC下搭建hadoop
一:简介 Hadoop是一个用Java开发的开源框架,它允许使用简单的编程模型在跨计算机集群的分布式环境中存储和处理大数据。它的设计是从单个服务器扩展到数千个机器,每个都提供本地计算和存储。特别适合写一次,读多次的场景。 Hado…...
Python如何实现自动登录和下单的脚本,请看selenium的表演
前言 学python对selenium应该不陌生吧 Selenium 是最广泛使用的开源 Web UI(用户界面)自动化测试套件之一。Selenium 支持的语言包括C#,Java,Perl,PHP,Python 和 Ruby。目前,Selenium Web 驱动…...
华为OD机试真题Python实现【关联子串】真题+解题思路+代码(20222023)
关联子串 题目 给定两个字符串str1和str2 如果字符串str1中的字符,经过排列组合后的字符串中 只要有一个是str2的子串 则认为str1是str2的关联子串 若不是关联子串则返回-1 示例一: 输入: str1="abc",str2="efghicaibii" 输出: -1 预制条件: 输入的…...
Flutter+【三棵树】
定义 在Flutter中和Widgets一起协同工作的还有另外两个伙伴:Elements和RenderObjects;由于它们都是有着树形结构,所以经常会称它们为三棵树。 这三棵树分别是:Widget、Element、RenderObject Widget树:寄存烘托内容…...
若依系统【SpringBoot】如何集成qq邮件发送【超详细,建议收藏】
若依系统的部署博主就不在这儿阐述了,默认大家的电脑已经部署好了若依系统,这里直接开始集成邮件系统,首先我们得需要对qq邮箱进行配置;一套学不会你来打我😀; 一、开启我们的qq邮箱发送邮件的配置 1、先进…...
kettle使用--1.mysql多表关联导入mongoDB
文章目录1. 初步体验:csv 转为excelKettle概念配置mysql链接mysql 一对多关联查询结果保存到mongodb中1. 初步体验:csv 转为excel Windows环境下安装pdi-ce-8.0.0.0-28.zip ,解压后执行lib下的Spoon.bat 将csv输入拖入 双击拖进去的csv&…...
2023年CDGA考试-第10章-参考数据和主数据(含答案)
2023年CDGA考试-第10章-参考数据和主数据(含答案) 单选题 1.实现主数据中心环境的三种基本方法中不包括哪种? A.参考目录 B.注册表 C.交易中心 D.混合模式 答案 A 2.参考数据还具有很多区别于其他主数据 (例如,企业结构数据和交易结构数据)的特征。以下哪项目描述错误的…...
2023年,什么行业更有发展前景?
关于有前景有发展的行业推荐,小课今天还是推荐咱们IT互联网行业。 很多人会说现在懂电脑的那么多,这个行业都饱和了,很多学电脑的找不到工作都改行了。但事实是现在每个行各业都需要互联网,需要懂电脑的技术人才,尤其是在云计算、大数据到来…...
致盛咨询携手亚马逊云科技进一步开拓中国市场
作为医疗保健领域的咨询公司,ZS需要保证服务可靠性、敏捷性和安全性的同时,获得经济效益。亚马逊云科技丰富的云服务产品简化了ZS基础架构的搭建,为ZS节省了大量的人力与资金成本。同时,缩短了ZS扩展基础设施的周转时间࿰…...
ts之 命名空间 namespace、三斜线指令、声明文件(declare 声明ts的变量函数第三方模块等 )
目录ts之 命名空间 namespacets之 命名空间 namespacets之 三斜线指令 ( 引入其他.ts文件 )app.tsindex.tsts之 声明文件 d.ts - declare01:declare声明express第三方模块typings 为代码或者第三方模块 编写声明文件index.ts02:de…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
