Llama2-Chinese项目:7-外延能力LangChain集成
本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。
1.调用Llama2类
针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下所示:
from llama2_for_langchain import Llama2
# 这里以调用4bit量化压缩的Llama2-Chinese参数FlagAlpha/Llama2-Chinese-13b-Chat-4bit为例
llm = Llama2(model_name_or_path='FlagAlpha/Llama2-Chinese-13b-Chat-4bit', bit4=True)
while True:human_input = input("Human: ")response = llm(human_input)print(f"Llama2: {response}")
2.Llama2 LLM类具体实现
主要是def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str函数实现。LangChain八股文也不难实现,如下所示:
from langchain.llms.base import LLM
from typing import Dict, List, Any, Optional
import torch,sys,os
from transformers import AutoTokenizerclass Llama2(LLM): # LLM是一个抽象类,需要实现_call方法max_token: int = 2048 # 最大token数temperature: float = 0.1 # 生成温度top_p: float = 0.95 # 生成概率tokenizer: Any # 分词器model: Any # 模型def __init__(self, model_name_or_path, bit4=True):super().__init__()self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,use_fast=False)self.tokenizer.pad_token = self.tokenizer.eos_tokenif bit4==False: # 32bitfrom transformers import AutoModelForCausalLMself.model = AutoModelForCausalLM.from_pretrained(model_name_or_path,device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)self.model.eval()else: # 4bitfrom auto_gptq import AutoGPTQForCausalLMself.model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,low_cpu_mem_usage=True, device="cuda:0", use_triton=False,inject_fused_attention=False,inject_fused_mlp=False)if torch.__version__ >= "2" and sys.platform != "win32":self.model = torch.compile(self.model)@property # @property装饰器将方法转换为属性def _llm_type(self) -> str:return "Llama2"def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:print('prompt:',prompt)input_ids = self.tokenizer(prompt, return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')generate_input = {"input_ids":input_ids,"max_new_tokens":1024,"do_sample":True,"top_k":50,"top_p":self.top_p,"temperature":self.temperature,"repetition_penalty":1.2,"eos_token_id":self.tokenizer.eos_token_id,"bos_token_id":self.tokenizer.bos_token_id,"pad_token_id":self.tokenizer.pad_token_id}generate_ids = self.model.generate(**generate_input)generate_ids = [item[len(input_ids[0]):-1] for item in generate_ids]result_message = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]return result_message # 返回生成的文本
参考文献:
[1]https://github.com/FlagAlpha/Llama2-Chinese/blob/main/examples/llama2_for_langchain.py
[2]https://github.com/langchain-ai/langchain
相关文章:
Llama2-Chinese项目:7-外延能力LangChain集成
本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。 1.调用Llama2类 针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下所示:…...
ES6中数组的扩展
1. 扩展运算符 用三个点(...)表示,它如同rest参数的逆运算,将数组转为用逗号分隔的参数序列。扩展就是将一个集合分成一个个的。 console.log(...[1, 2, 3]); // 1, 2, 3可以用于函数调用 扩展运算符后还可以放置表达式 ...(x > 0 ? [a] : [])如…...
计算机考研 | 2016年 | 计算机组成原理真题
文章目录 【计算机组成原理2016年真题44题-9分】【第一步:信息提取】【第二步:具体解答】 【计算机组成原理2016年真题45题-14分】【第一步:信息提取】【第二步:具体解答】 【计算机组成原理2016年真题44题-9分】 假定CPU主频为5…...
Web版Photoshop来了,用到了哪些前端技术?
经过 Adobe 工程师多年来的努力,并与 Chrome 等浏览器供应商密切合作,通过 WebAssembly Emscripten、Web Components Lit、Service Workers Workbox 和新的 Web API 的支持,终于在近期推出了 Web 版 Photoshop(photoshop.adobe…...
FL Studio21.1.0水果中文官方网站
FL Studio 21.1.0官方中文版重磅发布纯正简体中文支持,更快捷的音频剪辑及素材管理器,多样主题随心换!Mac版新增对苹果M2/1家族芯片原生支持。DAW界萌神!极富二次元造型的水果娘FL chan通过FL插件Fruity Dance登场,为其…...
[BJDCTF2020]Mark loves cat
先用dirsearch扫一下,访问一下没有什么 需要设置线程 dirsearch -u http://8996e81f-a75c-4180-b0ad-226d97ba61b2.node4.buuoj.cn:81/ --timeout2 -t 1 -x 400,403,404,500,503,429使用githack python2 GitHack.py http://8996e81f-a75c-4180-b0ad-226d97ba61b2.…...
@SpringBootApplication注解的理解——如何排除自动装配 分布式情况下如何自动加载 nacos是怎么被发现的
前言 spring作为主流的 Java Web 开发的开源框架,是Java 世界最为成功的框架,持续不断深入认识spring框架是Java程序员不变的追求。 本篇博客介绍SpringBootApplicant注解的自动加载相关内容 其他相关的Spring博客文章列表如下: Spring基…...
HTTP的前世今生
史前时期 20 世纪 60 年代,美国国防部高等研究计划署(ARPA)建立了 ARPA 网,它有四个分布在各地的节点,被认为是如今互联网的“始祖”。 然后在 70 年代,基于对 ARPA 网的实践和思考,研究人员发…...
软件测试教程 自动化测试selenium篇(二)
掌握Selenium常用的API的使用 目录 一、webdriver API 1.1元素的定位 1.2 id定位 1.3name 定位 1.4tag name 定位和class name 定位 1.5CSS 定位 1.6XPath 定位 1.7link text定位 1.8Partial link text 定位 二、操作测试对象 2.1鼠标点击与键盘输入 2.2submit 提交…...
JavaSE入门--初始Java
文章目录 Java语言概述认识Java的main函数main函数示例运行Java程序认识注释认识标识符认识关键字 前言: 我从今天开始步入Java的学习,希望自己的博客可以带动小白学习,也能获得大佬的指点,日后能互相学习进步,都能如尝…...
leetcode做题笔记160. 相交链表
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意,函数返回结果后&…...
数学建模Matlab之检验与相关性分析
只要做C题基本上都会用到相关性分析、一般性检验等! 回归模型性能检验 下面讲一下回归模型的性能评估指标,用来衡量模型预测的准确性。下面是每个指标的简单解释以及它们的应用情境: 1. MAPE (平均绝对百分比误差) 描述: 衡量模型预测的相对…...
微服务网关:Spring Cloud Zuul 升级 Spring Cloud Gateway 的核心要点
1. 服务路由 1.1. Zuul 接收请求: 在routes路由规则中,根据path去匹配,如果匹配中,就使用对应的路由规则进行请求转发如果无法从routes中匹配,则根据path用“/”去截取第一段作为服务名进行请求转发,转发…...
视频讲解|含可再生能源的热电联供型微网经济运行优化(含确定性和源荷随机两部分代码)
1 主要内容 该视频为《含可再生能源的热电联供型微网经济运行优化》代码讲解内容,对应的资源下载链接为考虑源荷不确定性的热电联供微网优化-王锐matlab(含视频讲解),对该程序进行了详尽的讲解,基本做到句句分析和讲解…...
3种等待方式,让你学会Selenium设置自动化等待测试脚本!
一、Selenium脚本为什么要设置等待方式?——即他的应用背景到底是什么 应用Selenium时,浏览器加载过程中无法立即显示对应的页面元素从而无法进行元素操作,需设置一定的等待时间去等待元素的出现。(简单来说,就是设置…...
[Spring] Spring5——AOP 简介
目录 一、AOP 简介 1、什么是 AOP 二、AOP 底层原理 1、动态代理原理 2、基于接口的 JDK 动态代理 3、基于继承的 CGLib 动态代理 三、底层原理实现—— JDK 动态代理 1、使用 Proxy 类的方法创建代理对象 2、JDK 动态代理示例 四、AOP 操作术语 1、连接点 2、切入…...
C/C++ 动态规划面试算法题
1.买卖股票的最佳时机 https://blog.csdn.net/qq_41277628/article/details/113322136 输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 1)的时候买入,在第 5 天(股票价格 6ÿ…...
kafka伪集群部署,使用zookeeper模式
1:拉去管理kafka界面UI镜像 docker pull provectuslabs/kafka-ui2:拉去管理kafka镜像 docker pull bitnami/kafka3:docker-compose.yml version: 3.8 services:zookeeper-1:container_name: zookeeper1image: bitnami/zookeeperports:- "2181:2181"environment:- …...
Postgresql 主从复制+主从切换(流复制)
pgsql有多种主从复制方式,推荐的是流复制 一、前置条件 1.至少两个pgsql数据库(可以是一台设备上的两个) 可以参考下面的教程 pgsql编译安装:pgsql 编译安装(linux) pgsql单机多开:pgsql 单机…...
java获取字符串集合中每个字符并且组成一个新的集合实现
直接怼代码,刚好碰到了这种需求,也是想了可久,其实想想也还是挺简单的 public static void main(String[] args) { // 原始字符串集合 List<String> originalList new ArrayList<>(); originalList.add("Hello"); …...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
